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[1] Minimum Variance Analysis (MVA) is frequently used for the geometrical
organization of a time series of vectors. The Coplanarity Variance Analysis (CVA)
developed in this paper reproduces the layer geometry involving coplanar magnetosonic
shocks or plane-polarized wave trains (including normals and coplanarity directions)
300 times more precisely (<0.1�) than MVA using the same input data. The CVA
technique exploits the eigenvalue degeneracy of the covariance matrix present at planar
structures to find a consistent normal to the coplanarity plane of the fluctuations. Although
Tangential Discontinuities (TDs) have a coplanarity plane, the eigenvalues of their
covariance matrix are usually not degenerate; accordingly, CVA does not misdiagnose
TDs as shocks or plane-polarized waves. Together CVA and MVA may be used to sort
between the hypotheses that the time series is caused by a one-dimensional current layer
that has magnetic disturbances that are (1) coplanar, linearly polarized (shocks/plane
waves), (2) intrinsically helical (rotational/tangential discontinuities), or (3) neither
1 nor 2.
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1. Introduction

[2] The search for geometry in space plasmas invariably
focuses on sites of relatively abrupt reorientations of the
magnetic field and other fluid variables. For historical
reasons these structures were initially catalogued using
magnetometer measurements and collectively called Direc-
tional Discontinuities (DD). DDs are caused by localized
current layers usually modeled as planar sheets with spatial
variation allowed only along the surface normal. Surveys of
DDs were initially organized by the net angular rotation w of
B caused by the localized current. It has since been deter-
mined largely by Minimum Variance Analysis [Sonnerup
and Cahill, 1968] that the geometry and classification of
such DDs is susceptible to large errors unless w > 30� and the
ratio of intermediate to smaller eigenvalue exceeds 10. The
DDs confirmed in space plasmas include the Tangential
Discontinuity (TD); the Rotational Discontinuity (RD);
and the Fast, Slow, and Intermediate shocks (FS, SS, IS).
[3] Minimum Variance Analysis (MVA) was invented to

survey time profiles of magnetometer data at the magneto-
pause, looking to differentiate a locally closed magneto-
pause in the form of TDs from locally open magnetopause
layers in the form of RDs modeled as a one-dimensional
sheet current layer [Sonnerup and Cahill, 1968]. MVA
presumes the one-dimensional nature of the current sheet
and uses Gauss’s law to require that the projection of B
along a to-be-determined direction n̂ should be constant.

The assertion central to the technique is that the variance of
that component of the field about its mean and constant
value should yield the smallest variance. The MVA problem
is an extremum problem, reducible to a 3 � 3 eigenvalue
problem for a real symmetric (covariance) matrix whose
positive eigenvalues are the variances of the field along the
principal coordinate axes [Sonnerup and Scheible, 1998].
The minimum eigenvalue l1 determines a related eigenvec-
tor direction z1 which MVA identifies with the normal n̂ to
the current sheet. By theorem, the eigenvectors zj of the
covariance matrix of MVA can be constructed to be mutu-
ally orthogonal; they form a convenient basis to define a
transformation from the original sensor coordinates to a
‘‘minimum variance’’ coordinate system. The ease of mak-
ing such a transformation explains its frequent use in the
literature, even in circumstances where it is manifestly
inappropriate. Second to its ease is the fact by theorem
that it always returns an answer even though it may be
inappropriate or ill-founded.
[4] A tacit assumption of MVA is that the eigenvalues of

the covariance matrix only have one ‘‘smallest’’ or mini-
mum eigenvalue. The sufficient test for this condition is
usually reformulated by the requirement that (l2/l1) � 10,
where 2(1) denotes the intermediate (minimum) eigenvalue.
In the literature MVA is usually introduced without dis-
cussion of this eigenvalue ratio, simply by announcing data
transformed in ‘‘the’’ minimum variance coordinates with-
out a discussion of its pedigree. When the eigenvalue spread
has been discussed in the past, samples of DDs with w > 30�
only rarely satisfy the sufficient eigenvalue condition given
above. The recent study by Knetter et al. [2004] has shown
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that there is an interrelationship between adequate eigen-
value ratio and angular excursion that are compatible with
good geometry determination. What are these other DDs
with low spreads in covariance eigenvalues and large w?
The layers are surely current layers, since direction of B is
observed to change. This paper begins by examining the
other DDs besides those for which MVA was constructed.
[5] There are other current layers with spatial variation

allowed in only one-dimensional: these DDs are the Plane-
Polarized Waves (PPW) and shocks which have two distinct
orthogonal directions where the projections of B(t) are
constant. For these structures the variance along these
directions could be equally expected to be simultaneously
small. It is for these circumstances that the new technique of
Coplanarity Variance Analysis (CVA) is introduced in this
paper. As discussed below, such geometries should be used
rather than those implied by MVA when the covariance
eigenvalue ratio is not comparable to or above the sufficient
lower limit of 10 discussed above.
[6] It will be developed that CVA can find the geometry

of PPW/shocks without becoming distracted and misdiag-
nosing true TDs (that have certain planar attributes that are
indeed different from those of PPWand shocks). Conversely,
it is shown below that MVA is only well suited to the task of
delineating geometry when looking at RDs and TDs. By
simulation we demonstrate the corollaries: (1) MVA analysis
of a wide range of shocks does a horrible job reconstructing
their geometry, and (2) CVA operating on an RD or TD with
angular rotations of more than 30� also does an equally poor
job of reconstructing their geometry. In this way we dem-
onstrate the sieving property of MVA and CVA and illustrate
how these tools operating on DDs of unknown pedigree
could differentiate them without confusing them. Separately,
MVA and CVA affirm or deny disjoint hypotheses under a
common assumption that the DD under analysis results from
a one-dimensional (1-D) planar current sheet: (1) MVA: is
the layer an RD or a TD?; (2) CVA: is the layer a PPW or a
MHD shock wave? If neither hypothesis is affirmed, a third
hypothesis must be considered: (3) is the sampled DD
determined by current systems that cannot be confined to a
plane?

2. Review of DD Properties

[7] The magnetic field vectors through an RD can be
viewed as if they are arranged to partially cover the surface
of a right elliptical cone, always possessing a constant,
nonzero field component, Bn, along the altitude of the cone
(c.f. illustrations in the works of Burlaga et al. [1977] and
Baumjohann and Treumann [1996]). The magnetic field
vectors through a TD can be viewed as laying on a right
elliptical cone in the limit that the altitude vanishes, leaving
the magnetic field layers to sweep out an elliptical arc in a
plane perpendicular to the direction of its ‘‘vanished’’
altitude. Thus B(t) at TDs can be viewed as being ‘‘copla-
nar,’’ while B(t) at a RD are not. In the plane perpendicular
to their altitudes the projection of B(t), called a hodogram,
looks remarkably similar for TDs and RDs, usually being
the arc of an ellipse when low pass filtered. Tangential
discontinuities occur at interfaces between plasmas with no
communication except lateral stress balance; they lack field
lines that connect the two sides of the sharpest currents.

Thus the projection of B along the direction, nTD, of spatial
variation in a TD should vanish; the normal tTD to the TD
coplanarity plane (containing all the B(t) of the TD) is
collinear with nTD, implying that nTD � tTD = ±1.
[8] The magnetic field vectors through a Plane-Polarized

Wave PPW lay in a plane that contains the direction of
propagation, kPPW, and the wave’s plane-polarized but
fluctuating components. The magnetic lines of force of such
a PPW lay in a PPW ‘‘coplanarity’’ plane; the PPW
coplanarity plane also contains kPPW. The normal to the
coplanarity plane, tPPW, is perpendicular to kPPW. In a 1-D
current layer geometry the spatial variation of the plane-
polarized wave is along k; in this circumstance Gauss’s law
guarantees that the component of B(t) along k must be
conserved and k̂ should be a direction of small variation of
the magnetic field. However, because the wave disturbance
is postulated to be a plane-polarized there are additional
directions, namely ±tPPW, along which the projection of the
magnetic field should vanish and also have small variation.
Summarizing for a PPW we have the condition tPPW �
kPPW = 0, which clearly differentiates its coplanarity plane
from the coplanarity plane of a TD where the analogous two
quantities are collinear rather than orthogonal.
[9] All three shocks (FS, SS, IS) are made up of magnetic

fields that almost everywhere are ‘‘coplanar’’ like the field
samples of a PPW. This assumption is (briefly) violated in
the actual current carrying layer of the shock [Goodrich and
Scudder, 1984]. It is in this sense that shock waves also
have two orthogonal directions where components of B(t)
are expected to be nearly constant and whose variation
about those constant values should also be small. If a
minimum variance layer has a magnetic hodogram that is
linearly organized, it has two orthogonal directions where
small variations, ls, can be anticipated. In lieu of additional
information such layers may be either a linearly polarized
TD that does not propagate or PPW/shocks that do; with
either identification the common attribute is plane polari-
zation. The implied normal for the structure will depend on
the TD or PPW option selected. The existence in shocks
and plane-polarized waves of two orthogonal directions
where constant average fields are expected is the essential
insight of the CVA approach to the geometry of these
structures.
[10] Eigenvalues of the covariance matrix are coordinate

invariant assays of the vector field, playing the same roles as
the three moments of inertia for the inertia tensor of
distributed bodies. When the vector field’s covariance
matrix has eigenvalues with multiplicities, it possesses a
higher symmetry than vector fields that do not possess such
multiplicities. In this sense the magnetic field about RDs
and TDs are current layers of lower symmetry than shocks
and PPW. Since any given magnetic line of force through an
RD does not reside in a plane, such lines possess nonzero
torsion; while TDs do not possess field lines than transit the
current layer, they are comprised of parallel sheets of
magnetic lines of force that are skew with respect to their
neighbors on both sides of the current sheet plane. When
either a TD or (RD) is transited by the spacecraft, the
magnetic field appears to rotate in a plane perpendicular to
the current sheet normal, sweeping out a spiral staircase
with the horizontal (canted) treads being successive skew
(nested corkscrew) field lines. RDs and TDs can both be
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viewed as essentially elliptically polarized layers, while
shocks and PPW are essentially plane-polarized structures.
[11] RD/TD layers possess an elliptical polarization,

while plane-polarized waves and shocks are higher symme-
try structures with linear polarization. PPW and shocks are
referred to below as Coplanar Wave Disturbances (CWDs).
CWDs have magnetic tubes of force that are ‘‘almost
everywhere’’ coplanar as they thread the current carrying
layer and magnetically connect both sides of the current
density. This paper identifies the higher symmetry of the
CWD DDs as the reason why single spacecraft MVA
determines a poor geometry for these layers; it also suggests
a suitable computational approach for obtaining the geom-
etry of CWDs in the form of Coplanarity Variance Analysis
(CVA) that uses the same data input as MVA. CVA
accurately (�1�) reconstructs the shock normal (wavevec-
tor) and the orientation of the coplanarity (polarization)
plane across a broad range of realistic slow and fast
modeled shock profiles. Of course, CVA does not replace
full Rankine-Hugoniot (R-H) fitting procedures [e.g., Vinas
and Scudder, 1986] or multiple spacecraft assays [e.g.,
Knetter et al., 2004] that rely on the augmented information
of multiple diagnostics across the same shock or multiple
spacecraft. CVA may, however, be the ‘‘best’’ available
source of geometry for CWDs when the correlative mea-
surements at a shock necessary to perform R-H tests or
multiple spacecraft are unavailable at the requisite time
resolution.
[12] The three eigenvectors of the covariance matrix

organize the observed components of B and that of its
hodogram determined by the locus of the components of B

transverse to the normal: B?(t) = B(t) � (B(t) � n)n. The
orientation of the intermediate and maximum eigenvalue’s
eigenvector in the plane of the hodogram are indicated in
Figure 1 for a TD with net angular rotation of w = 60�. The
measurement coordinate system is used to illustrate the
typical elliptical motion of the hodogram that accompanies
TD and RDs. The orientation of the maximum (inter-
mediate) variance’s eigenvector is indicated by the red
(cyan) line segment. The half-length of each of these
segments about the diamond is equal to the standard
deviation determined from the respective eigenvalues of the
covariance matrix. The diamond is located at the average
transverse magnetic field components in this plane. The red
direction of maximum variation (selected by the eigenvalue
problem) is oriented to maximize the dispersion of the data
projected along it. Conversely, the blue line is oriented so as
to minimize the variance of the transverse components of B
while being perpendicular to the red line. Clearly, the length
of the arc is enhanced and the direction of maximum
variance made more certain when the arc in the hodogram
extends over a larger angle, a corollary of increasing w. An
important observation, valid even as w decreases, is that the
direction of maximum variance still remains relatively well
defined. If the transition at the TD/RD is accomplished by a
very small w such that a small portion of an arc will be well
represented by a line segment, the intermediate (blue)
dispersion will reduce to noise levels, artificially making the
eigenvalue along the normal to this plane and along the
cyan direction nearly equal with small eigenvalues. When
this occurs, there is an ‘‘artificial’’ degeneracy in the DD
sampled, rendering geometry from variance techniques of
any type questionable for want of adequate leverage. This
accidental degeneracy underlies the operational procedure
of many years standing to not attempt to get geometry from
DDs with angular changes that are too small.

3. Symptoms of the Problem

[13] An isomagnetic RD transition is illustrated in terms
of its Cartesian components of B by the solid curves of
Figure 2a. The coordinates were chosen so that the initial
magnetic field direction was in the x-z plane. The normal
component is shown in light blue (cyan), while the trans-
verse components are illustrated in red (y) and green (z)
traces. The dashed curve of the corresponding color is the
arithmetic mean of that Cartesian component. Colored flags
anchored by a diamond reflect the standard deviation of that
component about its mean in this coordinate system. The
normal component has a small variance. The other two
components have variances that are larger owing to the
coherent jumps in the averages of both of these components.
[14] Figure 2b illustrates the same RD of Figure 2a in the

standard ‘‘minimum variance’’ coordinates where the MVA
eigenvectors have become the new basis directions: x0 = z1;
y0 = z2; and z0 = z3. The standard deviations in the new
coordinate system are also shown. The two Figures of Merit
in the MVA panel are defined by FOM = Q1, Q2, where Qj =
lj/(l1 + l2 + l3). By theorem, the sum of the variances
cannot change under coordinate rotations. In the MVA
coordinate system, however, the component variances in
Figure 2a have been repartitioned among the transformed
components of the magnetic field, increasing the variance of

Figure 1. Portrayal of the hodogram of a Tangential
Discontinuity (TD) or Rotational Discontinuity (RD) in
coordinates transverse to the adopted normal, illustrating the
geometrical content of the direction of maximum (red) and
intermediate variance (cyan) and the control on these
segregated variances by the arc length of the net rotation of
the hodogram. When the net angle w of rotation of B gets
small, the arc length of the hodogram is reduced and this
curve increasingly approximates a linear segment, with
ever-decreasing dispersion transverse to the direction of
maximum variance. At some point this intermediate
eigenvectors dispersion becomes comparable to the small
dispersion along the normal and the eigenvalue problem is
effectively degenerate. To avoid this ‘‘accidental’’ degen-
eracy, it is common practice to restrict geometry work with
directional discontinuities to those with w > 30�.
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the z0 components, while compensating by lowering the
variance along the y0 direction. Eigenvalues (variances) are
(are not) coordinate invariant properties of the geometry.
The ratio l2/l1 = Q2/Q1 � 8 in this example approaches the
recommended [Sonnerup and Scheible, 1998] ratio of 10 for
good geometry definition at TD/RDs using MVA. Since the
variance is positive and it was already essentially 0 along x,
it is not surprising that the minimum variance direction, x0,
is selected parallel to x with essentially the same variance
about it. (For the coordinate rotation between the two
frames (Figure 2a ! Figure 2b) the sum of the eigenvalues
for eigenvectors transverse to the normal is also preserved
as a corollary to the invariance of the sum of eigenvalues
and the null variance along the x coordinates in both initial
and final frames considered here.)
[15] The magnetic fields on either side of the shock, as

sketched in Figure 3, should have no average components
perpendicular to a yet to be found coplanarity plane, parallel
to the two planes labeled C, C0. This plane also ‘‘contains’’
the shock normal n, the net vectorial changes of the
magnetic field, and the fluid velocity, a property not shared
by the coplanarity plane of a TD discussed above. The
statements of ‘‘contain’’ and are ‘‘perpendicular’’ are in the
sense of vector algebra of a vector field and MHD; these
local geometrical statements do not imply the global geo-
metrical properties of tubes of force that pierce the shock
layer. For example, as the tube of magnetic force crosses the
shock (S) layer, it migrates perpendicular to C (and thus the
coplanarity plane) within the current carrying shock layer
en route to the geometrically equivalent parts of ‘‘the’’

coplanarity plane labeled C0 [cf. Scudder, 1995, Figure 15].
A plane-polarized wave train would have the same coplanar
geometry, but the field lines throughout that disturbance
would lay in one geometrical plane throughout the distur-
bance. If the normal to the coplanarity plane is identified as
the y00 direction in CVA, there is the requirement in this

Figure 3. Isometric drawing of the geometry of magnetic
tubes of force at a slow shock layer (S) for the purpose of
illustrating the issues with MVA coordinate system (x0, y0, z0)
and the newly proposed CVA coordinate system (x00, y00, z00)
for time series where it is suspected that the vector field is
coplanar, as in a shock. The normal n to the shock and to the
coplanarity plane t is indicated. The equivalent planes
(MVA), (CVA) spanned by eigenvectors of potentially
degenerate eigenvalues are also indicated. The split
coplanarity plane is labeled C and C0.

Figure 2. Left column pertains to simulated RD. Right column pertains to simulated Fast Shock. In
both columns, thick curves depict the variation of three Cartesian components of B across time series.
Light blue (x); two components transverse to x are illustrated in red (y) and green (z). Temporal average
of each component is given by dashed line of the same color. Variance about the mean of each component
is indicated by vertical error bar of the same color, anchored with a diamond on the average dotted line.
FOM(1, 2) indicates (l1, l2)/(l1 + l2 + l3). (a) RD with x direction along the normal. (b) Same RD as in
Figure 2a described in MVA geometry: x along the minimum variance; z direction of maximum variance.
(c) Same RD as in Figure 2a described in CVA geometry: y perpendicular to coplanarity plane, z in
direction of maximum variance of MVA. (d) Fast Shock in laboratory coordinates. (e) Same Fast Shock
as in Figure 2d but viewed in MVA geometry: x direction of minimum variance, z direction of maximum
variance. (f) Same Fast shock as in Figure 2d in CVA geometry: y coplanarity plane normal, z maximum
variance direction.
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system that hBy00i = 0, where the angular brackets imply the
time average. In general there must be changes in a CWD in
the remaining transverse direction we will call z00; there is
current perpendicular to this polarization plane either in the
shock front (S) or throughout the wave train. Like the
component along the wave vector, the magnetic component
of the CWD out of the coplanarity (polarization) plane are
ideally not only expected to be constant but zero. By the
same argument that motivated MVA as a minimization
problem, the variance of the components out of the copla-
narity plane should also be small for a CWD.
[16] Therefore to find a geometry suitable for CWDs, a

coordinate system must be found where both sx
00 and sy

00 are
small while hB(t)i � y00 = 0. The first two of these require-
ments explains how MVA can fail to obtain good CWD
normals; a CWD possesses two (!) ‘‘minimum’’ variance
directions, presenting two orthogonal directions of ‘‘essen-
tially’’ the same very small variance. For shocks whose
internal structure is sensed, and as Figure 3 illustrates, there
is a small net average value of hB(t)i � y00 [Goodrich and
Scudder, 1984; Tidman and Krall, 1971] that will cause
slight errors to be made on requiring the chosen CVA
coordinate system by enforcing hB(t)i � y00 = 0. Depending
on the fraction of data included in the time series containing
the current layer, there may be a slight preference for a
lower variance along the normal relative to the y00 direction.
Offsetting this possibility are 2-D effects that impact the
constancy of the normal component and preshock and
postshock wave trains that contribute to both variances,
leaving it a tossup which directions (normal or along
coplanarity normal) that should have the lesser variance.
[17] Figure 2d depicts a fast shock magnetic field

profile (as a concrete example of a CWD) in the space-
craft frame, using the same colors as the other panels for
its x (cyan), y (red), and z (green) components. In this
frame there is usually variance along all three Cartesian
directions. Figure 2e illustrates the MVA reorganization
attempted for the shock time series and variances. The
FOM values are comparable to one another, unlike the
situation in Figure 2b where the RD FOM were distinct in
the ratio exceeding 8. The ratio of eigenvalues is 2.7, well
below the recommended value of 10 for confident geometry
inversion. Theminimum variance red (x0) and cyan (y0) traces
have mean values both substantially different from zero.
[18] However, Figure 2f illustrates the reorganization

afforded by the CVA technique developed below. The
new x (red) trace is steady, while the cyan trace reflects
hBy00i = 0. The z00 component of B increases in time, and this
profile is recognized as a potential shock candidate. CVA
has found the ‘‘correct’’ underlying shock solution, while
MVA has not. The FOM for CVA is the variance along the
newly selected x00 and y00 directions divided by the invariant
Pythagorean sum of variances. The FOM are approximately
equal and more equal than the FOMs for the MVA assay of
the same time series in Figure 2e. The separate totals of the
FOMs from MVA and CVA for the same time series are, by
construction, equal; the CVA choice has enforced coplanar-
ity at the price of slightly increasing the variance along the
selected normal. The equipartition of the FOM at small
values in CVA is noteworthy, since as we see here it
correctly suggests a CWD, affirming the geometrical con-
struction of CVA is more than linear algebra. As shown

below when the CVA is applied to modeled TDs, the
equipartition of its FOMs is not proscribed by the technique
but a diagnostic of the technique’s suitability for the type of
time series under study.
[19] An interesting question remains with real data,

‘‘How does one tell whether one should stop at the MVA
or the CVA geometry inversion?’’ A clue is in the MVA
FOM after MVA reorganization of time series with different
intrinsic symmetries: Figures 2b (RD) and 2e (Fast Shock).
The MVA FOM on the RD are distinct with ratio 8+, clearly
well separated on the interval of [0,1]. By contrast, the
MVA FOM for the shock layer has ratio 2.7 in Figure 2e;
while formally distinct, these FOM are operationally small
and their ratio well below 10 recommended for accurate
geometry inversions using MVA at elliptically polarized
layers. If the MVA situation on a new time series looks like
that in Figure 2e, it is appropriate to press on with CVA
analysis developed in this paper. The price of not pursuing
this distinction can leave the physics of the layer unfo-
cussed, as in upper three panels of Figures 6 and 7, where
data CWDs placed in MVA coordinates are not recognizable
even as members of the DDs of MHD.
[20] To shed further light on this problem, we complete

our graphical discussion in Figure 2c, where the ‘‘linear
polarization’’ tool of CVA analysis has been blindly used
on an elliptically polarized layer of a simulated RD. In
seeking to enforce a CWD geometry, this procedure has
increased the variance in CVA along the suggested normal
(cyan) trace FOM(1), giving to it nearly all the very
substantial variance that previously was along the y0 direc-
tion in MVA. By the nature of CVA, the z00 axis in CVA is
the same physical direction as in MVA, so the particular
‘‘reconstruction’’ in Figure 2c selected by the CVA algo-
rithm has effectively mixed the x0 and y0 MVA components
en route to satisfying the CVA algorithm. It is not so
damaging that CVA Q1 is preferentially increased by
CVA in Figure 2c; rather, it is that by performing CVA
blindly on the time series that a large ratio of eigenvalues is
inverted upside down for CVA FOMs with the implication
that in CVA the variance along the normal is 8+ times the
variance in the direction normal to the coplanarity plane.
The clear indication that CVA is inappropriately applied in
this time series is that Q1 in CVA is comparable to Q2 of
MVA on the RD, which we have already said was clearly
distinguishable from and 8+ times larger than Q1. The fact
that CVA Q1 is not substantially the same as CVA Q2

implies that the CVA geometry is unlikely to be correct.
Conversely, in Figure 2f, when the final result and correct
geometry for the shock simulation was acquired by CVA,
Q1,Q2 were essentially the same, even though the algorithm
described below does not enforce this condition (as can also
be seen in Figure 2c).

4. Geometry for the CWD Problem

[21] The eigenvector z3 associated with the maximum
eigenvalue of the MVA’s covariance matrix is the most
robust eigenvector for either the RD or shock layers even in
the presence of 2-D effects and even when Q2/Q1 � 10
(cf. statistical study summarizing over 100,000 MVA inver-
sions [Scudder et al., 2005a]). While this is also true in the
situation as w > 30�, CVA is not recommended for geometry
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reconstruction in DDs with such shallow deflections. In
CVA we identify z3 with the direction transverse to the
normal (wave vector) and parallel to the components of B
that participate in the net compression at the shock (undu-
lations in the CWD). Such an eigenvector will be oriented in
the phase front of a shock (S), transverse to the normal and
in the coplanarity plane parallel to C, C0 of Figure 3. In the
CVA, z00 = z3 will be the same maximum variance eigen-
vector z0 found via MVA. Since the Bz00 possess a net change
at a shock wave, its variance will certainly be nonzero and
expected to be the direction of the largest variance for a
CWD (as shown for a shock in Figures 3e and 3f).
[22] The normal t to the coplanarity plane (Figure 3) is

required to be perpendicular to z3 = z0, yielding the first
CVA condition; (1) t � z3 = 0. Since on average B must
reside in (be parallel to) the coplanarity plane, we obtain the
second CVA condition: (2) t � hBi = 0. As we require a unit
t vector, we enforce the third CVA condition: (3) jtj2 = 1.
These three conditions determine all components of t to
within an unimportant overall sign. The shock normal is
then given by n = t � z3, completing a new right-handed
CVA coordinate system: z1

0 = n; z2
0 = t; z3

0 = z3. The matrix
of transformation from the original to the CVA coordinate
system is given by

L
$

original ! CVAð Þ ¼
nx ny nz
tx ty tz
z3x z3y z3z

0
@

1
A

so that the transformed magnetic field would be obtained

by matrix multiplication as BCVA = L
$

� Boriginal. This
transformation implements in one step, a procedure that is
essentially two steps in succession: transforming to MVA
followed by a rotation by an angle j* about z3 to achieve
the average coplanar condition.

5. Discussion

[23] The geometrical content of the rotation involving j*

(implicit in the top two rows of L above) is illustrated in
Figure 3. In the plane (labeled MVA) the typical orthogonal
MVA eigenvector directions x0, y0 found for a shock are
indicated. Because of the near degeneracy of the minimum
and intermediate eigenvalues, these coordinates are not
uniquely constrained and could be essentially any pair of
perpendicular directions in this plane. In the case of strict
eigenvalue degeneracy the actual vectors selected are algo-
rithm-dependent! Instrumental circumstances as well as
other perturbations on the data may ‘‘split’’ the degeneracy
presented by the idealized DD. This is generally of no
consequence except when a recipe depends on the unique-
ness of a direction assigned to one of these two directions as
with MVA normals. By contrast to MVA, the choice of j*

corresponds to picking two other equally viable perpendic-
ular directions, x00 and y00 (front plane in Figure 3 labeled
CVA) that span the same plane as did x0, y0 by requiring the
B00 in CVA to be coplanar on average.
[24] A nonzero choice of j* implies that ‘‘the’’ normal

according to CVA, z1
0, is no longer the strict minimum

variance direction of MVA, z1. In fact, the algebraic

construction of L
$

above illustrates that there is no room
for an additional minimization of the variance along the
normal once the maximum variance direction has been

adopted as one of the basis vectors of the CVA system.
This also shows that there is no recipe with Lagrange
multipliers and minimization that can find the CVA basis,
since it is not strictly a direction of minimum variance.
There may be a minimization formulation for CVA that asks
the variance along two orthogonal directions n0, t0 to be
maximally equal, with the third basis vector found by the
right hand rule. Were such directions found, the litmus test
of such a technique would be how far n0 � t0 was from
being parallel to the direction of maximum variance that is
robustly determined and probably the best vector available
for geometry at such layers when only using one vector
field.
[25] As shown in the examples in Figures 2d–2f, the

variance Q1 of the field components along the CVA ‘‘nor-
mal’’ for shocks remains small because the variance along
any direction in the plane labeled MVA/CVA of Figure 2 is
small, bounded by theorem by the sum of two assumed
smallest eigenvalues of the covariance matrix. The precon-
dition for attempting the reorientation of the normal by the
CVA procedure was that the data set does not determine it
very well, and that Q1, Q2 are both ‘‘small’’ and not so far
dispersed obeying Q2/Q1 � 10. (Common sense must enter
these decisions, especially when enforcing the eigenvalue
ratio tests between eigenvalues that are small and when
either value is computed to be below the real noise floor of
the measurement.) In a sense we are hypothesizing the
existence of the coplanarity plane in place of presuming
that the direction of minimum variance always defines the
current sheet normal. The maximum variance direction and
the CVA coplanarity direction once found in a CWD then
determine a better normal (see below for simulations of
precision) via the right-hand rule, provided the CVA FOM
are consistent with the CVA hypothesis.
[26] Conversely, as shown in Figure 2c, when CVA is

forced on a RD time series, the result is to put a large Q1 on
zx
0 components in order to make the zy

0 components have
zero mean; this is not a failure of CVA but of judgment
about the distinctness of the eigenvalues of MVA that
implies that the MVA eigenvectors, not CVA basis, should
have been used to determine the geometry.
[27] The sieve between CVA and MVA geometry then

devolves on the judgment of the effective degeneracy of the
smallest two eigenvalues of covariance matrix and review-
ing the figures of merit of both approaches to see which
techniques presumptions may have been contradicted. Two
Figures of Merit, FOM = Q1, Q2, should be considered.
Notice that the FOM goes with the process and the time
series. The success of MVA requires that Q2 > 10Q1, as is
almost satisfied in Figure 2b. Clearly, when FOM = (10�4,
0.4, 0.5999), MVA (CVA) does (does not) give a reasonable
geometrical reconstruction for the normal, but not a terribly
precise idea even of the direction of maximum variance.
(Since TD and RD properties are not tied to the absolute
direction of the intermediate or maximum eigenvector this
degeneracy is unimportant.) However, when FOM = (0.04,
0.1, 0.86), CVA (MVA) can (cannot) provide a viable
geometry for physical interpretation.

5.1. Can CVA Get Confused While Analyzing TDs?

[28] It has been argued during the refereeing of this paper
that CVA is fatally flawed and would misconstrue TDs as
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shock waves. This argument originates with the fact that TD
magnetic vectors are indeed coplanar, a perceived similitude
between CWDs and TDs. This section is designed to refute
this seemingly cogent criticism.
[29] (1) It is undisputed that the coplanarity plane of a TD

is parallel to the planar current sheet of the TD; the TD
coplanarity normal and the normal to the current sheet of the
TD are parallel. (2) It is also an undisputed fact that the
Rankine-Hugoniot conditions and the definition of a plane-
polarized wave imply that the CWD coplanarity plane
contains the wave vector, which is the normal for a 1-D
CWD. (3) Point 2 implies that the normal to the CWD
coplanarity plane is orthogonal to the normal/wavevector of
the CWD, in contradistinction to the geometry of the TD’s
coplanarity plane. (4) Points 1 and 3 imply that for a TD,
only one direction is expected to have a constant (�0)
magnetic field component; as a corollary, a TD is expected
to have only one direction of small variance, since it has
only one a priori direction where a component of B is
expected to be constant. (5) By contrast, point 3 also implies
that two orthogonal projections of B at a CWD should be
constant, with one of them being zero; both such compo-
nents should have small variance. Thus a CWD (TD) does
(does not) have the degenerate eigenvalue situation that
CVA presumes. Used properly to test the CWD hypothesis,
CVA would repudiate a TD time series as consistent with a
CWD, in spite of the fact that TDs and CWDs each have a
coplanarity plane of a different kind.
[30] As a simple demonstration that the logic of the above

response to the referee is correct, a thousand different TDs
are analyzed by CVA and MVA using the rules of selection
outlined above. The TDs are modeled in the simplified
parametric form

Bx ¼ 0:02 sin 20pQ tð Þ

By ¼ 2 coswoQ tð Þ

Bz ¼ 5 sinwoQ tð Þ

Q ¼ 1

2
1þ tanh

t � 0:5

0:25

� �
;

where wo is the net angular rotation across the current layer.
The hodogram is an ellipse and a small amount of noise has
been retained along the normal. The thousand TDs differed
only by the size of 0 < e < wo < p. Figure 4 summarizes the
variation of the FOM variations of the two techniques. In
the solid curve the variation of YCVA = ((FOMCVA(1))/
(FOMCVA(2))) from CVA is plotted, while the red curve
depicts YMVA = ((lMVA(2))/(lMVA(1))) from the
eigenvalues of MVA. Below w � 30� these two traces
are distinct, but they come together and overlay one
another at larger w. The green vertical line indicates the
lower bound of the DD regime (w = 30�) where
geometry is inferable from variance studies. (Note that
this lower bound also prevents MVA from ‘‘building a
geometry’’ at very small ws even though the ratio of very
small eigenvalues may exceed the suggested ratio of 10.
The dark blue highlighted portion of this curve indicates
intervals in w > 30�, where YMVA > 10 and MVA is
expected to be able to accurately identify the direction
of minimum variance without potential confusion. The

orange diamond is located on the single point on the
solid curve where YCVA � 1, the regime where CVA
expects to find viable geometry. At all other locations in
these simulations of TDs the CVA premise of equal
FOMs is repudiated; consequently, its suggested geom-
etry is also of no interest in the physical diagnosis of the
time series. Furthermore, the isolated angular regime
where there is a suggestion of confusion and equal
FOMshappenswhenw<30�, a situation known for over
35 years to be a poor circumstance to determine a DD’s
geometry. Thus from two vantage points CVA will not
misconstrue true TDs as shocks: (1) CWD and TDs have
different eigenvalue symmetries and are accordingly
distinguishable when corollaries of the premises of
these tests are checked; and (2) direct simulations,
using the CVA decision framework, clearly rejects DDs

Figure 4. Summary of 1000 TDs analyzed by CVA and
MVA techniques. Horizontal axis is the net angle of
magnetic rotation, w. The vertical axis is Y, the ratio of
Figures of Merit (FOMs) defined in the text for CVA in
solid curve and MVA in the red curve. At intermediate ws
these two curves become identical. The thick blue curve
indicates domain where MVA is said to be a satisfactory
tool for the geometry inversion of the (RD/TD) current
sheet. Orange diamond indicates the recommended locale
where CVA analysis is consistent with expected FOMs of a
Coplanar Wave Disturbance (CWD). Thick green line is the
w = 30� dividing line for ‘‘accidental’’ degeneracy: where
the arc of the hodogram in Figure 1 starts to look linear,
providing insufficient leverage to extract a geometry by
MVA. It should be noted that all attempts for CVA analysis
that are anywhere close to acceptable FOM ratio are not in
the domain of Directional Discontinuities (DDs) usually
attempted for current sheet geometry. The conclusion is that
the only acceptable geometries for these TDs would be
provided by MVA analysis and that there is essentially zero
chance that CVAwhen processing a true TD would mistake
it for a CWD.
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with w > 30� as candidate CWDs, let alone a specific
type of (intermediate) shock suggested by the referee.
To underscore the precision of MVA in this environ-
ment, the dashed red curves of this figure depict the
error in the recovered normal to the modeled current
sheet (using the scale on the right-hand vertical axis).
For MVA above w = 30� this error is less than 1�. For
the high eigenvalue ratios with MVA at small ws the
conventional wisdom is upheld with MVA missing the
normal by 90�! By contrast, and as expected, the poor
CVA YCVA discussed above correctly presages the 90�
errors (dotted black line) realized for all ws when blindly
using CVA for the geometry, after ignoring the poor FOM
attributes for these TDs. This finding also illustrates that
having a reasonable CVA FOM is not enough to go
forward with the CVA geometry; rather, good FOMs and
w � 30� are necessary to make a credible argument that
the geometry inversion is viable.

5.2. Precision of CVA and MVA Geometries at
Synthetic Slow and Fast Shocks

[31] A series of one-dimensional magnetosonic shock
layers were prepared to contrast the geometry inversion
provided by CVA and MVA. The modeled oblique shocks
only differ by their compression factor, h = B2/B1, which
ranges from e � 0 to 4, from switch-off slow shocks to high
mach number fast-mode shock layers. The normal compo-
nents of shocks of different compression have the same size,
leading to a QBn variation with h. Noise localized to the
layer is superposed and a realistic net value for hBy

00i is in
each profile. (The shock profile in Figure 2d was an
example from this set.) MVA and CVA were used on the
same time series to recover the geometry, which is then

compared against the known geometry of the simulated
shocks. Figure 5 (top) summarizes the angular error in
degrees for the recovery of the shock normal and the
coplanarity normal in the bottom panel. The black (red)
trace in each panel is the absolute angular error using MVA
(CVA). Except in the vicinity of very weak (h � 1) shocks,
the CVA approach recovered the shock geometry at better
than 0.1�, while MVA rather systematically got the CWD
geometry wrong, missing by more than 25�. Since CVA
explicitly requires a good direction of maximum variance,
its ‘‘failure’’ at very weak shocks is understandable, since
there is little leverage in the very small transverse change in
that negligible circumstance.

5.3. Observations

5.3.1. Plane-Polarized Wave Disturbance
[32] As the first of two brief examples using this tech-

nique, we consider GGS-Polar magnetometer data on
31 January 2004, which contains a magnetopause crossing
discussed more extensively in two recent papers [Mozer et
al., 2004; Scudder et al., 2005b]. The upper three panels of
Figure 5 are the three components of B in the MVA
coordinate system determined from data between the ver-
tical dashed lines between approximately 0746:00 and
0748:00UT. The principal axis transformation determined
from the MVA procedure produces B(t) with strongest
variations along the z0 axis, and successively less variation
along x0 and y0, but both of these MVA components have
significant average components across the analysis interval.
The MVA FOM are Q1 = 0.039, Q2 = 0.115, with a ratio of
2.9 � 10. Each of the MVA FOM is strongly smaller than
Q3. Since they are not large relative to one another, ‘‘the’’
minimum variance direction is not well defined.
[33] The small and comparable sizes of the MVA FOM

suggest considering CVA for the geometry of this distur-
bance as a CWD. The lower three panels illustrate the field
transformed to the CVA system. The average of the y00

component of BHVA is zero with only modest variations,
while Bx

00 is remarkably steady. The CVA FOM are nearly
balanced with values Q1 = 0.075, Q2 = 0.079. This interval
is consistent with being a CWD, a viewpoint not accessible
from the MVA reorganization in the upper three panels. The
planar wave field is consistent with a linearly polarized
large-amplitude slow-mode wave. The wave is slow mode
by showing that the density and magnetic field strength are
anticorrelated [Scudder et al., 2005b].
5.3.2. Candidate for Slow Shock
[34] A second example in the same format is shown in

Figure 6 where an abrupt reorientation of the field is seen
about 0745:57UT. The magnetic field transformed to the
MVA geometry determined for the interval between the
vertical dashed lines is shown in the upper three panels,
while the CVA geometry inversion is illustrated in the lower
three panels. The MVA FOM are Q1 = 0.049, Q2 = 0.184,
small and close together with ratio 3.7 � 10. The magnetic
field organized in MVA has a strong average y0 component.
In keeping with our arguments above, the MVA geometry is
not warranted. The CVA approach finds a candidate copla-
narity plane with CVA FOM of Q1 = 0.126, Q2 = 0.107 that
are nearly balanced, as we saw in Figure 2f in our
simulations with a CVA recovery of a CWD. The physical
interpretation in the MVA system is confused at best, while

Figure 5. Inventory of the precision of recovery of CWD
geometry at slow and fast mode shocks as a function of
compression ratio h = B2/B1, using MVA (black) and CVA
(red). Upper (lower) panel depicts the error in the normal
(coplanarity normal) directions from the model. Quantita-
tive demonstration that CVA does an excellent job
recovering shock normals and coplanarity directions, while
MVA does not.
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in CVA this interval is consistent with a CWD with a
relatively sharp field magnitude change within it. Of
particular interest is the planar structure with a nearly
complete ‘‘switching-off’’ of the transverse Bz

00 component,
reminiscent of the behavior of the strongest (switch-off)
slow shocks.
[35] A successful (Q1 � Q2) CVA geometry does not

prove that the time series is a shock but indicates that the
time series has passed a falsifiable test consistent with a
planar vector field. A possible reason for this planar
condition (especially in the presence of the abrupt change
in the z00 component) is that this is a shock layer; this
hypothesis is fully explored by Scudder et al. [2005b].

6. Summary

[36] CVA performs well with high precision on simulated
and real data and should actively be considered for geo-
metrical reconstructions in tandem with MVA techniques. In
the framework of hypothesis testing, MVA is best adapted
to answering the question ‘‘Is it a 1-D current layer

possessing elliptical polarization,’’ while CVA is best adap-
ted to answering the question ‘‘Is it a 1-D current layer with
linear polarization.’’ Explicit demonstrations have been
provided to show that MVA works poorly for CWD and
CVA works poorly for RDs/TD. MVA and CVA, together
with their figures of merit, can be used to test these two
hypotheses; failing both these hypotheses also provide a
rationale for a category of ‘‘other’’ shear layers of possibly
multidimensional character that should not be interpreted as
if they were one-dimensional transects. In this way physical
models can be evaluated in the best geometries that can be
determined from the limited world line data that satellites
provide. The community deserves a defense of the coor-
dinate systems proffered to interpret data. The FOMs
indicated should be used and presented to substantiate
the use of a reordering coordinate system. It should be
unacceptable practice to present data in MVA or CVA
without a demonstration of their relative plausibility and
consistency of the FOMs with the premises that generate
the mathematics that yield the coordinate transformation
recipes.

Figure 7. Polar data for 31 January 2004 contrasting the
magnetometer data at the Earth’s magnetopause in MVA
versus CVA coordinate representation, illustrating the
detection with CVA of a candidate for plane-polarized
disturbance.

Figure 6. GGS Polar data for 31 January 2004 contrasting
the magnetometer data at the Earth’s magnetopause in MVA
versus CVA coordinate representation. Lower three panels
consistent with the detection of a linearly polarized slow
mode wave.
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