Title: Consequences of the large ambipolar electric field in the solar wind
Authors: Scudder, J. D.
Affiliation: AA(Iowa University)
Publication: Iowa Univ., International Solar Wind 8 Conference, p. 37
Publication Date: 06/1995
Category: Solar Physics
Origin: STI
NASA/STI Keywords: Solar Wind, Electric Fields, Electron Distribution, Velocity Distribution, Solar Physics, Sun, Distribution Functions, Heat Transfer, Dichotomies
Bibliographic Code: 1995sowi.confR..37S

Abstract

The parallel electric field in the solar wind is much smaller than the V x B motional electric field, yet in the proper dimensions units it is very 'large'. At the orbit of earth it is within a few percent of being at the Dreicer limit. This 'large' electric field is required for quasi-neutrality; it will be shown to have interesting consequences for the electron velocity distribution function and the description of transport of heat. Interestingly, a similar dimensionless situation also occurs at the base of the transition region, while below the transition region the dimensionless electric field is
very weak. These facts suggest a new way to look at the thermal-suprathermal dichotomy in velocity distributions as the response of a plasma where charge neutrality requires such large dimensionless electric fields.