
Chapter 2
Collisionless Reconnection and Electron
Demagnetization

J.D. Scudder

Abstract Observable, dimensionless properties of the electron diffusion region of
collisionless magnetic reconnection are motivated and benchmarked in two and
three dimensional Particle In Cell (PIC) simulations as appropriate for measure-
ments with present state of the art spacecraft. The dimensionless quantities of this
paper invariably trace their origin to breaking the magnetization of the thermal
electrons. Several observable proxies are also motivated for the rate of frozen flux
violation and a parameter �˚ that when greater than unity is associated with close
proximity to the analogue of the saddle point region of 2D reconnection usually
called the electron diffusion region. Analogous regions to the electron diffusion
region of 2D reconnection with �˚ > 1 have been identified in 3D simulations.
10–20 disjoint diffusion regions are identified and the geometrical patterns of
their locations illustrated. First examples of associations between local observables
based on electron demagnetization and global diagnostics (like squashing) are also
presented. A by product of these studies is the development of a single spacecraft
determinations of gradient scales in the plasma.

Keywords 3D reconnection • Collisionless reconnection • Demagnetization
observables • Diffusion region • Electron demagnetization • Reconnection site

2.1 Introduction

Magnetic reconnection is thought to be made possible by the existence of a “dif-
fusion” region where “physics beyond Alfvén’s ideal MHD” facilitates a steep, but
smooth, transition between asymptotically sheared magnetic fields. Such a transition
effects an interconnection of the previously unlinked, but sheared, magnetic field
lines enabling a reorganization of their topology; after reconnection previously
skew magnetic field lines pierce the plane of the current sheet. Before reconnection
particle populations on either side of the current sheet could not interpenetrate; after
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reconnection previously separated plasmas can mix with the advent of components
of B normal to the current sheet. Prior to steepening such a sheared current channel
might be viewed as a classical tangential discontinuity, (TD). As a non-propagating
limit of a slow wave, whose normal has become perpendicular to the local magnetic
field (Burlaga 1995), this layer is in pressure equilibrium. In nature the current
channel of a TD usually occurs with thermal ion gyro radius scales. Theoretically
this channel can form a Vlasov equilibrium with scales as small as the electron gyro-
scale (Burlaga and Lemaire 1978), although they are usually unstable. Collisionless
reconnection can arise in the unstable disruption of such layers (and with the
evolution of other initial configurations) when the current channel has narrowed
to widths of the order of the electron inertial lengths in the plasma which are
the skin depth, de � c=!pe and the thermal gyro radius, �e � w?;e=˝ce. The
electron plasma and cyclotron frequencies are defined by !2pe � 4�ne2=m and
˝ce � eB=mc, respectively. The j’th species’ average rms thermal speed transverse
to the magnetic field is denoted w?;j � p

2kT?;j=Mj, where Mj is the particles mass
and c is the vacuum speed of light. This particle’s transverse thermal speed and
cyclotron frequency determine its thermal gyro radius �j D w?;j=˝cj.

Alfvén’s ideal MHD is an approximation frequently made to simplify the
description of plasmas when they only possess very long spatial scales L >> �i

and possess very weak time dependence compared to the cyclotron frequencies. As
useful as the ideal MHD approximation can be, it does not apply everywhere in a
plasma; the physics of magnetic reconnection is only describable by foregoing the
simplifications of Alfvén’s keen early insight.

While precise mathematical definitions of reconnection have been proposed in
3D geometries, such relationships are usually non-local conditions that are even
difficult to verify within simulations, let alone testable with the most advanced,
but relatively local, experiments flown on small spacecraft armadas. Even in 2D
geometries the mathematical conditions are difficult to experimentally parse, since
they define reconnection to be possible when not equal conditions of the form Y ¤ 0

are fulfilled, where Y is some relationship between flow, electric and magnetic fields.
Care should be taken to note that such conditions may be necessary for reconnection
to ensue, but their satisfaction is generally not sufficient to identify reconnection as
having been witnessed.

In this chapter the discussion focuses on likely observable properties that the
inner “diffusion” layer of the reconnection channel might have, while showing that
these properties are restatements of, or are rare proxies for the more stringent theo-
retical definitions. In some circumstances we will argue that necessary conditions of
the form Y ¤ 0 will need to be strengthened to jYj > a > 0, with a non-zero value
of a before the necessary condition becomes selective enough to identify layers that
are actually undergoing magnetic reconnection (cf. Sect. 2.4.1ff).

A commonly cited condition for characterizing magnetic reconnection involves
testing for conversion of electromagnetic energy into plasma energy, JkEk > 0,
where the parallel subscript denotes the component along the local magnetic field
direction: Gk � G � Ob. To date no direct measurements of these quantities have ever
been made together at the same location in space. Both observables are difficult
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measurements; recent progress on Ek detection has been made with long wire
booms, but detection of electron inertial scaled Jk layers is exceedingly difficult.
Their determination is outside the scope of curlometer approaches, Dunlop and
Balogh (2005), with spacecraft flotilla since collision avoidance of the spacecraft
keeps the multi-point observations separated on scales broad compared to that
of the expected current channels. Direct detection of the current density from
particle measurements are impacted by the different time resolutions of electron
and ion sensors needed for adequate counting rates and the need to determine 3D
number fluxes nkVk for all charged species in the plasma, including those sequential
(and, therefore, time aliased) estimates made for different ion species: J.t/ D
˙kZknk.t/jejVk.t/. Even on the recently launched Magnetospheric Multi-Scale
(MMS) mission the fastest time scale for determining all necessary contributions
from particles for J is acquired across a total collection time of 10s (South West
Research Institute 2010; Fuselier, 2015, private communication). For typical relative
motions of the spacecraft such time resolution is still beyond that required at the
noon magnetopause to measure JkEk directly. Using measured profiles from the
magnetometer requires intricate and usually unknown knowledge of the world line
of the observations of the profile to estimate the current density J. Typically avail-
able measurements constrain the integrated change of the current �I much more
accurately than the current density, that is theoretically required. Accordingly, the
desired identification of the reconnection locales must explore other more accessible
observables. Unfortunately there are a large number of conceptually critical quanti-
ties that are not directly observable. Accordingly, a somewhat indirect approach is
required to establish the locales and properties of reconnection layers in space.

Our approach requires the certification of observables that could be made from
spacecraft and a description of the electrodynamics that satisfies the theoretician
that magnetic reconnection produced the signatures being inventoried. Clearly this
argument would be tautological if made using in situ data. This chapter profits from
using 2 and 3D Particle In Cell (PIC) simulations of reconnection layers which allow
internal diagnostics not available to the spacecraft borne observer, which can be
used to assure the theoretician that the layers inventoried are signatures of magnetic
reconnection. PIC codes can also sidestep the important and troublesome closure
problems present in other truncated fluid descriptions of space plasmas such as occur
with various forms of MHD. At the same time a subset of PIC output quantities can
determine the state of the art spacecraft observables as signatures of the layer. As
will become clear in this chapter this inner current channel is distinguished by its
effect on electrons, the smallest gyro radii particles in the plasma. Because PIC
codes follow the equations of motion of individual electron and ion proxies, the
fidelity of the aggregate dynamical picture they allow is clearer than models of
reconnection that describe this physics from the reduced fluid pictures of MHD or
extended MHD.

We will find it profitable to reframe desirable theoretical quantities from the
vantage point of the electrons in the form of the Generalized Ohm’s Law (Rossi
and Olbert 1970). This relationship replaces assumptions like E D �J with those
more appropriate for a wide range of collisionalities, including the troublesome
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collisionless regimes commonly occurring in space plasmas. Importantly, the PIC
approach allows all of the terms present in this law to be evaluated. The key to
detection of reconnection sites will be through electron specific observables and the
electric field Re reckoned in the rest frame of the bulk of the electrons, which moves
in the laboratory frame with velocity Ue. This electric field recurs so often that it
is given its own symbol, Re � E C Ue � B=c, and its own name, the Non-Ideal
Electric Field, since its size is above and beyond the common place Unipolar, or
Ideal Electric Field, caused by motion of the electron fluid relative to the magnetic
field: Eideal D �Ue � B=c. This reduced electric field occurs naturally as two of the
terms in the Generalized Ohm’s Law.

In Alfvén’s ideal MHD this unipolar ideal electric field is essentially the same as
seen in the center of mass frame of the plasma or in any species frame of reference,
since by assumption these are weak current regimes and all these frames of reference
are the same. For the electron rest frame observer we review below that the apparent
time dependence of the magnetic flux is controlled by the r � Re. This approach
greatly clarifies the physics that is often attempted with extended MHD language;
as the current densities increase and the plasma scales reach below the ion inertial
lengths this approach provides much needed clarity for the processes that can take
place, including reconnection, whether in the collisional or collisionless regimes.

In this chapter we develop an observational program for this inner layer of the
current channel that we will refer to below as the Electron Diffusion Region (EDR).
We will show that this layer’s special character is that it has gradient scales, L,
smaller than the thermal electron’s gyro radius, �e; this circumstance contradicts
that supposed when deriving MHD, where scale lengths are assumed to be much
larger than any particle gyro radius (L >> �i > �e); thus, it is not surprising
that non-MHD phenomena may be caused by such a layer. Observationally layers
with these scales are also extremely rare in astrophysics, not being a required part
of wave normal modes or discontinuities. Accordingly, defensible detections of
electron inertial scaled current channels are to be highly prized when seeking to
identify sites of collisionless magnetic reconnection. At the same time we address
the difficulty of measure spatial scales in moving media, resolving this problem
by showing that suitable dimensionless ratios like �e=L are direct observables with
modern state of the art plasma observations.

In MHD regimes the gradient scales are assumed to be longer than the gyro
radii of either electrons or ions so that the magnetic field strength appears to the
individual particle in the plasma to be slowly varying in space and time. These weak
variations permit one to predict from classical mechanics that the magnetic moments
�j D w2?;j=B of the particles will be adiabatically conserved, with the moment
calculated from the particle’s circular current formed by its motion transverse to the
field. �e conservation for the electrons implies that the magnetic flux linked by the
gyro orbit is conserved, or loosely, electrons can “follow” a magnetic line of force
as it gradually changes strength, direction or becomes slowly time dependent.

With the smallest mass in the plasma, the electron’s inability to “follow” a
magnetic line of force is much more noteworthy and rare than the circumstances
where ion’s cannot follow the same tube of force. Magnetic moment disruption for
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ions is considerably more common because the spatial scale of disruptive gradients
need only approach the ion gyro radius for this purpose which occurs in nearly every
MHD discontinuity, like tangential discontinuities (TD), rotational discontinuities
(RD), fast and slow shocks, and their wave antecedents.

Unlike the MHD regime, the electron diffusion region with L < �e is a
place where the electrons are said to be demagnetized, because the weak gradient
premises of this adiabaticity are not realized there. Vasyliunas identified that this
demagnetization of electrons was a necessary property of symmetric collisionless
reconnection layer in 2D (Vasyliunas 1975).

A common misconception is that �j conservation/violation occurring in the j’th
particles can be ascertained by monitoring the constancy of a moment quantity
kT?;j=B possessing the same units as �j. It is easy to construct Vlasov solutions
that conserve � for every particle, but do not conserve the moment related quantity
(Scudder et al. 1986). Thus, detection of variability of kT?;j=B need not imply
demagnetization of the j’th species.

The signature of the violation of �e conservation is that the electron probability
distribution in the proper frame, fe.w/, depends intrinsically on all three polar
variables jwj; �w; 	w, where w � v � Ue is the electron velocity relative to the
laboratory frame electron bulk velocity, Ue. Making observations that can discern
this behavior requires simultaneous sampling of all octants of velocity space,
which is possible with the present state of the art of plasma instrumentation;
however, measurements that have used spacecraft rotation to build up the gyro-phase
distribution of the 3-D velocity distribution are invariably aliased against detecting
these signatures. In addition defensible determinations of Ue in the presence of UV,
photo-electrons, spacecraft charging and the time aliasing of data acquisition is a
necessary experimental prerequisite for experimental detection of these expected
gyro phase dependences within the electron diffusion region.

In this chapter we extend Vasyliunas’ original insight into 3D models of recon-
nection, demonstrating theoretically and with PIC simulations that this inner layer
is characterized by demagnetized thermal electrons with observable consequences.
While the circumstances of electron demagnetization are expected to be very rare in
astrophysical plasmas, not all demagnetized layers are the electron diffusion region;
demagnetization will also be shown to occur in other narrow current channels on the
separatrices of the overall reconnection layer (where frozen flux violations are very
much weaker). Nonetheless, this demagnetization, if perceptible, is a significant
sieve for separating resolved two fluid current layers from electron inertial length
scaled layers that are potentially reconnecting. While demagnetization does not
define the EDR layer alone, it represents an astrophysically rare, necessary, local,
and observable kinetic property for a current layer to be a candidate layer where
collisionless magnetic reconnection might be underway.

Other theoretical considerations of generalized magnetic reconnection (GMR)
have found it necessary to define its occurrence in 3D in terms of global attributes
of the process. In this approach magnetic reconnection is defined by non-local tests
about the magnetic topology. Often it is defined as occurring by finding singular
curves/loop integrals that possess non-zero integrated Ek, (Hesse et al. 2005).



38 J.D. Scudder

Alternately, magnetic reconnection is said to require sheafs of field lines that are
initially localized in close proximity, but undergo exponential separation, forming
quasi-separatrix layers. Field lines that participate in such rapidly separating
quasi-separatrix environments have flux tube cross sections that are flattened into
highly elliptical cross sections, a global property made quantitative by non-locally
determining their squashing factors, 
 , Titov et al. (2002) and Demoulin et al.
(1996). These considerations are amplified in Chap. 3 of this monograph (Priest
2016).

As theoretically useful as such concepts may be, these non-local properties are
hard to verify using single spacecraft measurements, or even a flotilla of single
spacecraft measurements such as those of Cluster or Magnetospheric Multi-Scale
(MMS); they may not even be possible to discern except using global snapshots
from 3D simulations. If these non-local criterion are critical for discerning recon-
nection in the 3D astrophysical context, there would appear to be insurmountable
observational difficulties to provide in situ experimental closure with spacecraft data
of sites where it occurs. A brief discussion of some initial attempts to connect local
observables with these global concepts will be discussed in Section 2.9.3 of this
chapter.

There is also the thorny issue of whether the enabling site of collisionless
reconnection in 3D remains conceptually similar to the compact electron inertial
scaled region suggested by the isolated “X” saddle point of the flux function that
forms in simple 2D models. In 2D the flux function is the component of the vector
potential orthogonal to the plane of allowed spatial variations. If this plane of
variability is the x-y plane, the flux function Az.x; y; t/ completely determines the
variations of the magnetic field in the x-y plane (via the x and y components
of B D r � A). In 3D analogous flux functions do not exist, making the global
inventory of magnetic topology difficult. A very real possibility exists in 3D that
reconnection sites might be spawned in some loose association by flux ropes
enabled by other sites, with multiple ones coexisting in the same general pattern
(Daughton et al. 2011). To observationally characterize how reconnection occurs in
this likely situation would appear to require a program based on assaying physical
properties of the layers encountered, not seeking to verify preconceived geometrical
arrangements using 2D electron diffusion regions as the archetype. We outline a
procedure that appears to find the analogue of the electron diffusion region in 3D
PIC simulations with the same methodology that correctly identifies the saddle point
region of the 2D simulation where the flux function incontrovertibly has already
established the locale of the EDR.

The technical and mathematical conditions for reconnection in textbooks can be
rather challenging to verify. Take for example “. . . reconnection occurs if there is an
electric field, E along the separator, OS”, that is when E � OS ¤ 0. Other attempts
to define locally the process of magnetic reconnection also end up specifying
something else that is not zero. Examples are “. . . magnetic reconnection occurs
whenever the non-ideal electric field Re ¤ 0”. Still others insist that magnetic
reconnection occurs in the presence of quasi-separator curves delineated by flux
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tube path integrals and
R

B Ekds ¤ 0. Recently a theoretician suggested reconnection
could be identified by finding the regions where ne � ni ¤ 0. The required frozen
flux violation for magnetic reconnection takes the form r � Re ¤ 0. Vasyliunas’
arguments (Vasyliunas 1975) suggested the site of 2D symmetric collisionless
reconnection to be a place where the thermal electrons were not magnetized, which
is yet another not equal to zero condition: @f .w/=@	w ¤ 0. Even if all the quantities
were measurable for these conditions, they do not suggest how large a violation of
zero would confirm the occurrence of magnetic reconnection in the data.

All the conditions in the previous paragraph are of the form Y ¤ 0, making
Y a thresholdless variable, usually having dimensions. Such conditions are exper-
imentally difficult to test. The noise of measurement, �Y, can always satisfy a
thresholdless condition. Surely that is not enough to identify a site of magnetic
reconnection. Far better would be to couch the theory in terms of thresholded
and dimensionless conditions, that establish a minimum 
Y ¤ 0 for verification
that a process, effect or condition had been witnessed. Whenever Y=
Y > 1 and
�Y=
Y << 1 one has a non-trivial measure of signal to noise for the decision.
Lastly, but most important, the dimensionless test must be framed in terms of what is
observable with the current state of the art instrumentation; thus, nothing involving
delineating separators or measuring space charge densities is in this category at
present. For example, in space, there is no local observable Y that determines the rate
at which magnetic flux is being dissipated or the violation of the electron’s magnetic
moment, yet one still wishes to identify layers where this and related properties have
transpired to advance and test the present theoretical understanding of reconnection.

This chapter is about reorganizing what is presently known about collisionless
magnetic reconnection to produce observable, thresholded, dimensionless tests
specific to identifying the electron diffusion region; an observable test is one
that can be conducted with presently available state of the art plasma and fields
measurements deployed on available spacecraft. As will be clear when our list is
formulated, such tests will represent sieves of increasing probability that the electron
diffusion region has been transited.

A short tour of frequently cited observables for reconnection that are used in
the literature is provided in Fig. 2.1, Scudder (2015); those labeled “P-” are jump
conditions from conservations for layers that Pass a mass flux. As indicated by
the multiple situations (columns) with “X’s” in them, these tests are not specific to
the properties of only reconnection sites. The A* test is also tailored to identifying
torsional transitions, such as Alfvén waves, or rotational discontinuities (RD’s), that
transmit a mass flux while also shearing the magnetic field between their asymptotic
states. Any locally planar disturbance that propagates through the plasma satisfies
the “P-” or “A*” property.

While these tests may be necessary to screen discontinuities or waves that
pass mass flux as some reconnection models require, they are for such common
conditions in the plasma, by themselves they do not possess strong leverage for
identifying the layer as a part of the process of magnetic reconnection. Even the
frequently cited incidence of “jetting” or observations of flow acceleration are not
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Fig. 2.1 Tests used for magnetic reconnection detection in space plasmas (Scudder 2015). P- are
the flux passing test for planar layers (Paschmann and Daley 1998); A* is the Alfvénic or Walén
tests used in the literature. The theoretical T�1 test from Faraday’s law is discussed in this chapter,
but has not been tested in space. Subscripts n and tangential refer to the local plane tangential to the
current layer. Primed variables are observed in the rest frame of the current sheet. The deHoffmann-
Teller frame test checks for the existence of a frame of reference outside the layer were changes
of the fluid velocity and magnetic field are parallel. The Faraday Residue test attempts to identify
a non-zero conserved normal component of Bn (Gauss’ law) and conserved components of E � On,
which from the rE D 0 implies the layer traversed has a rest frame where the transition can
be viewed as time stationary. The Faraday residue test is usually performed with a flow proxy
E D �U � B=c and magnetic fields B. The Faraday residue test is an alternate test for non-zero
mass flux, best performed with electric and magnetic field observations. The X’s in a given row
denote the classes of layers where the test applies. When multiple X’s are in a row, many different
layers can pass such a test. J � E0 ¤ 0 corresponds to energy exchanged with the electromagnetic
field in the rest frame of the discontinuity, a process that occurs in most MHD transitions, whether
involving reconnection or not. This quantity measures the work done by the layer in the rest frame
of the layer and is generally partitioned between particles and fields; by contrast the Galilean
invariant quantity JkEk determines the net energy made available from the fields to the plasma,
which if greater than zero reflects one of the hallmarks of magnetic reconnection: a shift of field
energy into plasma energy

peculiar to reconnection, but are the hallmark of tangential accelerations that are
the property of Alfvénic structures wherever they are found. Thus to our point,
the identification of the reconnection site cannot primarily rely on the detection
of the P- and A* signatures as a certification of the reconnection layer. Performing
multiple tests successfully in the P- list can not strengthen the experimental case
that a reconnection layer has been transited, since any layer that passes a give P- test
should pass all of them, if the data quality and calibration are adequate for the test.
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2.2 Magnetic Reconnection

If steady 2D magnetic reconnection is described with spatial variations allowed in
the x-y plane, a time independent reconnection electric field, Ez is required parallel
to the current sheet implied by the abutting magnetic fields where B1 � B2 < 0. In
steady state a long way away from the current sheet Ez is determined by the ideal
electric field of MHD: Ez D �Oz � Ue � B=c; in this asymptotic regime the plasma is
idealized as essentially current and gradient free, as Alfvén’s hypothesized, where
U D Ui D Ue, where U is the center of mass velocity.

Faraday’s equation @B=@t D �cr � E for the plasma has many different
approximations where various terms are assumed important. In the frame where
the electrons are at rest (moving with velocity Ue in the laboratory frame) the left
hand side becomes a total derivative and E is transformed by Galilean effects to
become

DB
Dt

ˇ
ˇ
ˇ
Ue

D �cr � Re; (2.1)

where the total derivative in the frame moving with velocity W satisfies the operator
identity D=DtjW D @=@tCW �r. This rate of change is controlled by the circulation
of the non-ideal electric field Re defined in three equivalent ways:

Re � E C Ue � B=c; .I/ (2.2)

and from the steady state electron momentum equation

Re D � 1

ene

h
r � Pe C r � .mnUeUe/

i
C �J C TF.qe/; .II/ (2.3)

where the resistive electric field �J is defined by

�J D �enem�ei.Ue � Ui/; (2.4)

�ei is the electron ion coulomb collision rate, and TF is emf associated with the
thermal force, a friction between electrons and ions that is caused by the pear shaped
(skewed) electron distributions that reflect the presence of heat flow (Braginskii
1965).

Finally, a form for Re in terms of the ion flow velocity can avoid using the
electron flow velocity at the expense of including the Hall emf in the last term:

Re � E C Ui � B
c

� J � B
nec

: .III/ (2.5)

Form (III) is often used, but its equivalence to form (I) clearly establishes that the
Hall emf is (1) not able to disrupt the magnetic field from being frozen to the
electron rest frame and that (2) when the Hall emf’s are suggested to be necessary
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for fast magnetic reconnection to occur, their need could be viewed as arguments
that all the freedom of a two fluid plasma must be permitted to get fast reconnection,
including electron pressure gradients and the electron thermal force of version (II).
Because the Hall emf is not an agent for disrupting frozen flux as reckoned by the
electron rest frame observer, its occurrence in the so called ion diffusion region,
where Hall electric and magnetic signatures are observed, is not really a signature
of the frozen flux violation for the electron rest frame observer. Alternately, the
evolution equation for magnetic field lines continues to exist throughout the two
fluid ion diffusion region, because they are advected there by, and frozen into the
rest frame of the electrons (cf. Appendix 2).

2.2.1 Frozen Flux Violation

Consider a comoving, closed, right handed, orientable path C, with outward
vectorial area A along the local magnetic field direction, with differential normal
ObdA. Using Stokes theorem on Eq. (2.1) determines an equation for the rate of
change of magnetic flux,˚ , penetrating A for the observer moving with the electron
bulk speed Ue (Priest and Forbes 2000; Schindler 2000), viz:

D˚

Dt

ˇ
ˇ
ˇ
Ue

D �c
I

C

Ob � Reds: (2.6)

The time scale for this frozen flux change can be determined as

�˚ � ��1
˚ D

ˇ
ˇ
ˇ
Dln˚

Dt

ˇ
ˇ
ˇ
Ue

: (2.7)

Similar expressions can be determined for departures from line preservation with
rates for this process indicated by �" (Birn and Priest 2000; Scudder et al. 2015a).

When the RHS of Eq. (2.6) vanishes Alfvén’s Frozen Flux Theorem of Ideal
MHD is implied. If at time t the magnetic flux is “frozen”, it means that the
equation of motion for a magnetic field line (a) exists, (b) is locally the same as
determined from the electron fluid velocity, and (c) in an increment dt that the
field line’s location may be predicted to have moved transverse to itself a distance
ds.x/ D .U.x/e�.U.x/e � Ob.x// Ob.x//dt, and is well described by the B.xCds.x/; dt/.
In this situation there is no lateral slippage between the magnetic tube of force and
the local velocity of the electron fluid perpendicular to B. This theorem supposes
r � Re � 0; frequently revered as if it were a law of physics, the theorem loses
its predictive power in those physical circumstances, like reconnection, where this
precondition is no longer fulfilled. However, since the violations require gradients
and a circulation of Re the very long scale lengths of variation supposed by Alfvén
weaken the possible size of this violation unless Re simultaneously became large in
such weak gradient regions. However, since Re is a “left over” electric field above



2 Collisionless Reconnection and Electron Demagnetization 43

and beyond the unipolar E, one is hard pressed to suggest a physical system with
very large scales where Re grows to keep its curl sizable. This is the content of
Alfvén’s argument when he introduced his frozen in approximation.

When the frozen flux theorem is violated the mental image of field lines being
“carried” by the electron flow (in the above sense) is no longer strictly true.
Here, too, there is the absence of a threshold: slippage between the electrons and
B may occur, but be innocuous, while at other times the slippage is absolutely
essential to the dynamics of the process. Innocuous slippage occurs in many
places, since Alfvén’s frozen flux theorem is an idealization, akin to the no friction
assumptions that are common in first year mechanics problems. “Substantial” frozen
flux violations accompany magnetic topology change, a process that would not be
possible if the motion of magnetic field lines and the average cross field motion of
the electrons were always mathematically the same.

2.2.2 “Broken” Field Lines

These considerations are also involved in reconciling the perplexing MHD descrip-
tion of magnetic reconnection as a “cutting and restitching” of magnetic curves.
When decisive frozen flux violations occur the rearrangement over time of magnetic
field lines is not predicted by the electron kinematic description (Schindler 2000;
Birn and Priest 2000). Nonetheless, a spatial picture of the magnetic field can be
deduced at any “freeze frame”, but the temporal evolution of their rearrangements is
richer than the simple kinematic picture of magnetic field lines as spaghetti advected
by the electrons. In this sense the violation of Alfvén’s frozen flux approximation
reflects the hidden degrees of freedom that the Maxwell-Plasma system has that do
not conform to a kinematic picture of the electrons advancing the location of tubes
of force in the medium. These violations occur in locations with electron inertial
scale spatial gradients far removed from the large scale systems Alfvén had in mind
when suggesting the frozen flux simplification.

2.2.3 Regimes of Frozen Flux

The frozen flux condition

r � Re D 0 (2.8)

can be satisfied in many ways. Deciding that Eq. (2.8) has been violated has
proven to be a vexing problem for experimentalists with spacecraft time series data.
Alfvén’s frozen in condition, Re D 0, is the simplest condition that implies the
frozen flux condition is true, but it clearly is not the only one. In the space literature
the circumstances of violating the “frozen in condition” are commonly inverted
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to suggest that such observations imply violations of the “frozen flux condition.”
Alfvén’s frozen in condition is sufficient, but not necessary, for satisfying the frozen
flux condition. Simple counterexamples where Re ¤ 0 and the flux remains frozen
are Re D r where  is a scalar function, or Re D �rPe.n/=.en/, where Pe is
a scalar functional of n. For the theorist this implies that polytrope closures will
not allow collisionless reconnection. By such examples, experimental detections
of large values for Re ¤ 0 have no necessary claim on being sites for frozen
flux violation. Detection of significant Ek (Mozer 2005), which is clearly part of
Ob � Re ¤ 0, are an inadequate basis for routinely identifying sites of frozen flux
violation (Scudder et al. 2008). As seen from Eq. (2.6) Stokes loop integrals of
Ob � Re, rather than spot readings, are required to be non-zero to show violations
of the frozen flux condition. To date such loop integrals have not been produced
empirically.

2.3 Taxonomy of Non-ideal Effects

Clearly, violations of frozen flux are required for magnetic reconnection. Although
such violations are necessary for magnetic reconnection, they are not always
sufficient indicators of magnetic reconnection. Making decisions of this type will
hinge on the time scales �˚ of the frozen flux violation [cf. Eq. (2.7)], since Alfvén’s
suggestion of ideal MHD is based on an assumed scale free medium with time
scales for slippage assumed infinite; this idealization has frozen flux decaying at an
excruciatingly slow time scale, that in first approximation is ignorable.

If magnetic reconnection is to be defined, including a necessary threshold
of sufficient frozen flux violation, there must be a way to differentiate locales
where magnetic reconnection is dynamically important from those with innocuous
slippage that exist when Re has finite curls, because the scale lengths of variation
are longer than electron inertial scales but still not infinite. We set this as our focus
in this chapter.

The theoretical study of magnetic reconnection requires retaining some non-zero
Re that has a non-vanishing curl. When Re ¤ 0 is retained in the description of
the system it is referred to as a description via non-ideal MHD. The separation
of the effect of the ideal unipolar electric field seen by the observer at rest in
the electron frame in the LHS of Eq. (2.6) makes it clear that the electric field
contributions retained on the RHS in Re are not necessarily retained for their
numerical importance relative to the unipolar motional electric field, but are being
retained for what processes they structurally enable in the time and space evolution
of the magneto-fluid.

To avoid the complexity of the general form for Re, a considerable literature
exists discussing resistive reconnection that explores what may be learned without
treating Re in its full quantitative form. Some modelers have argued that it does not
matter what is used for Re, so long as it has a curl. Clearly that argument is not
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without exceptions, since so called fast reconnection with rates near 0:1VA were not
recovered until Re was modified to include so called Hall effect terms that allow two
fluid electrodynamics in the current sheet, while spatially uniform resistive terms
that treat the fluid as a single entity were ineffective for this purpose.

There is thus a two tiered approach: (1) the ideal processes are always addressed
with the LHS of Eq. (2.6), and (2) selected forms of Re that are retained on the RHS
for analysis of possibly new effects. Frankly, some choices in the literature reflect
avoiding the serious theoretical roadblocks to entertain more realistic treatments,
although this is changing with the advent of full Particle in Cell PIC and some
multi-fluid simulations that avoid most of these concerns, but contain challenges of
their own.

2.3.1 Coulomb Collisional Regime

By far the simplest regime is the collisional regime where Re is replaced by the
Ohmic emf :

Re ' �J D m�ei.Ui � Ue/

ene
; (2.9)

but neglecting the thermal force, TF.q/, which also scales with collision rate and
the heat flux. The cgs resistivity is given by �cgs D m�ei=.ne2/, where �ei is
the electron ion coulomb collision rate. Since the collision rate is proportional to
density, the non-constant properties of the resistivity involve its reduction as Te

increases according to the T�3=2
e ; this dependence can be important as the dissipation

heats the electrons in the current sheet. Physically this heating is spatially dependent,
but usually � is considered as uniform in space and constant in time when studying
problems of this type.

The ohmic emf has a curl so that �cr � Re D Dr2B, where the diffusivity D
(assumed uniform in space and constant in time) is given by D D c2�cgs=.4�ne2/ D
d2e�ei. In this resistive approximation Faraday’s equation becomes a simple parabolic
vector diffusion equation for B in the comoving frame of the electrons:

�ei
DB
Dt

ˇ
ˇ
ˇ
Ue

D d2er2B; (2.10)

where ��1
ei D �ei is the coulomb electron ion mean rate for momentum transfer. The

form of Eq. (2.10) shows that the natural length scale for coulomb resistive diffusion
is the electron inertial length, de, but the time scale for this process is the time scale
for electron-ion collisions. The origin of the term electron diffusion region (EDR)
is from this resistive MHD form of the reconnection problem, where the magnetic
field profile actually satisfies a mathematical diffusion equation within the current
channel. In present usage the EDR refers to the layer where the current is channeled,
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regardless of the mathematical form of the equation(s) that determine the transition
profile, even if they are not parabolic differential equations.

By neglecting the thermal force and the Te dependence of � this modeling is
not hampered by the other limitation of reduced theoretical models of magnetic
reconnection: closure. Closure is the process that effects a truncation of the infinite
number of moments of the kinetic equation for the plasma, that for example might
suggest how heat flows when there are gradients in the temperature and density.
Actually the neglect of the Te dependence of � is partially to avoid the closure issues
of how to advance the temperature without knowing a priori the form of the heat
law.

Throughout almost all locales of the current sheet the ideal left hand side of
Faraday’s equation dominates the non-ideal right hand side, even in the resistive
regime. The ratio of LHS to RHS is the magnetic Reynolds number, Rm, that in most
astrophysical contexts generally exceeds 106; however, the tiny but non-zero non-
ideal RHS enables structural changes (including changes in apparent connectedness
of asymptotically disconnected lines of force) that the left hand side cannot, no
matter how disparate their sizes may be.

2.3.2 Collisionless Terms of Re

The remaining terms of Re are the possible collisionless causes for magnetic
reconnection, since unlike � and TF they do not involve the binary collision rate
�ei. These are

Rless
e D �r � Pe C r � .mneUeUe/C @mneUe

@t /

ene
(2.11)

In order, these terms are known as the diamagnetic, dynamic and acceleration terms,
although as specific terms in the electron momentum equation they all are forces per
unit charge density felt by the electron fluid in the plasma.

We show below that Vasyliunas’ argument places the gradient scale of the
diamagnetic term in the reconnection channels as having a scale L ' �e �
ˇ
1=2
e de at least at the separator of symmetric 2D reconnection. In the literature

arguments appear that the diamagnetic term can be ignored (closure phobia!) by
only considering low ˇe << 1; however, the natural progress of collisional and
collisionless reconnection raises the electron temperature and weakens B so that the
current channel actually occurs in a higher ˇe than its value outside the current layer
(cf. Fig. 2.9). The diamagnetic term starts to grow on the di scale, when the two fluid
effects commence with ions and electrons taking different paths through the layer
and the diamagnetic pressure forces compensate for the new J � B force that occurs
in the one fluid description.
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Vasyliunas’ assay pertains to the inner electron diffusion region of a symmetric
reconnection layer where the electrons are demagnetized. In terms of the electron
thermal Mach number, Me � Ue=w?;e, the dynamic pressure term is O.M2

e / times
the diamagnetic term. While Me << 1 in traditional MHD, as we develop below it
is expected to be order unity within the current sheet. In steady state the acceleration
term vanishes, but in dynamic phases it clearly can be the same order as the other
terms. In the collisionless regime this term supports displacement current effects in
the emf which generally occur with !pe time scales, that are also frequently ignored,
appealing to MHD ordering. At times the anomalous resistance used in modeling is
said to reflect effects from this acceleration term. Therefore, in the current sheet of
magnetic reconnection the hierarchy of terms in Re are (diamagnetic:dynamic) and
are expected in the proportion .1 W M2

e /, with the dynamic pressure terms possibly
competitive with the diamagnetic terms near the saddle point, where as shown below
Me ' 1. The diamagnetic and dynamic terms can survive in steady state, while the
acceleration term is usually ignored.

2.3.2.1 Scales of Electron Diffusion Region

If steady magnetic reconnection is to be possible one of first two terms in the RHS
of Eq. (2.11) must produce an emf, Ez, out of the plane when 2D variations are
allowed in the x-y plane. Enforcing this condition at the stagnation point (in 2D) of
a symmetric reconnection layer shows that the divergence of the dynamic pressure is
not available for this purpose, since it vanishes there in this limit mn.Ue �r/Ue D 0.
The diamagnetic term’s divergence of the electron pressure tensor must perform this
role (Vasyliunas 1975).

Since in 2D the partial derivatives of the divergence act only in the x-y plane, the
Ez component is possible via

Oz � r � Pe D @Pe;xz

@x
C @Pe;yz

@y
: (2.12)

Assuming that the electrons remain magnetized implies (MacMahon 1965) that the
form of Pe can be given by

Pgyro
e;ij D Pe;kbibj C Pe;?.ıij � bibj/; (2.13)

where Pe;k are the three eigenvalues of the pressure tensor, two of which are equal
and associated with eigenvectors perpendicular to B. [In the isotropic pressure
regime the eigenvectors have no preferred direction.] Components of unit vectors
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along the magnetic field are denoted by bk D Bk=jBj and ıij is the well known
Kronecker delta. Equation (2.12) may now be evaluated as

Oz � r � Pe ' Oz � r � Pgyro
e D QI C QII C QIII ; (2.14)

where

QI � @.Pe;k � Pe;?/
@x

Œbx
bz C @.Pe;k � Pe;?
@y

Œby
bz (2.15)

QII � .Pe;k � Pe;?/
h@bx

@x

i
bz C .Pe;k � Pe;?/

h@by

@y

i
bz (2.16)

QIII � .Pe;k � Pe;?/bx
h@bz

@x

i
C .Pe;k � Pe;?/by

h@bz

@y

i
: (2.17)

All the quantities in square brackets, Œ 
, in Eqs. (2.15)–(2.17) will now be shown
to vanish at the separator. As one proceeds to the saddle point .xo; yo/ of the flux
function, Bx;By ! 0, so that QI ! 0. Similarly, since Bx.x; yo/ and By.xo; y/ are
both minima then @bx=@x; @by=@y ! 0 and QII ! 0. Finally, even with a constant
guide field Bz D C, @bz=@x D @bz=@y ! 0 and QIII ! 0. This calculation shows
by contradiction that Pe ' Pgyro

e cannot support the reconnection saddle point of
2-D symmetric reconnection, as it cannot produce the needed Ez dictated by steady
state conditions.

Vasyliunas concluded that collisionless magnetic reconnection required a full
tensorial Pe, more general than that assumed in Eq. (2.13); this new required
generality is sometimes referred to in the literature as the onset of non-gyrotropy.
Others have adopted the term and symbol agyrotropy, A;e (Scudder 2008), for this
broken cylindrical symmetry, defined by the formula

A;e D 2
jP?;e;1 � P?;e;2j
P?;e;1 C P?;e;2

; (2.18)

involving the two, possibly different, eigen-values for linearly independent eigen-
vectors perpendicular to the magnetic field of the tensor given in Eq. (2.35) below.
The term agyrotropy is a Greek construction that parallels that of anisotropy, which
is the negation of isotropy (Schulz, 2003, private communication); with agyrotropy
an+gyrotropy collapses to agyrotropy since the prefix occurs before a consonant,
unlike the case for an+isotropy. A;e is an observable if the electron pressure tensor
is measured in a model independent way with some reports of its detection (Scudder
2008; Scudder et al 2002; Scudder et al. 2012; Lopez 2015; Tang et al. 2013).
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Vasyliunas had also noted that achieving an agyrotropic electron pressure tensor
would require unusual conditions, since MacMahon (1965) had recently system-
atized the justification for a gyrotropic pressure tensor provided the electron thermal
gyro radius, �e, was small compared to the scale length, L, of gradients in the
problem and the time variations of the problem were slow compared to the electron
cyclotron period. In the usual MHD ordering, L is presumed much larger than �e;
thus the gyrotropic form [Eq. (2.13)] for Pe assumed in MHD is rarely considered
worrisome. However, Vasyliunas’ deduction that MacMahon’s ordering had to be
violated was consistent with his discussing magnetic reconnection where electrons
lose their labeling ability of field lines and that magnetic reconnection cannot occur
in the relatively weak gradient MHD regimes considered by MacMahon.

Vasyliunas also established that the scale L of the symmetric reconnection layer
would be comparable to �e, in order that an agyrotropic Pe could be understood
to naturally occur there. His analysis made a significant stride in the direction
of asserting how MHD’s predictions are vacated in the collisionless reconnection
layer: disrupt MHD’s inherent assumptions about relative scales. These assump-
tions are discussed in Sect. 2.4.

In steady state Vasyliunas’s conclusion underscored the importance of measuring
short scale lengths in the plasma if reconnection sites are to be identified. For space
measurements this poses serious operational problems (cf. Appendix 3) since the
observations are performed in moving media as time series, and are not known along
regular cartesian spatial arrays, as are available in a PIC simulation. In addition it
is also unknown if the transition is steady, planar, or of a known local orientation.
New approaches to this problem are discussed in Sect. 2.4.1 and Appendix 3.

2.3.2.2 Overview Collisionless Description

Since 1975 it has been clear that realizing the correct type of electron pressure tensor
to support Rez at the separator for 2D symmetric reconnection required gradient
scale lengths near or under the electron thermal gyro radius. This also meant that the
width of the current channel would be of the order of the electron skin depth, since
�e D ˇ

1=2
e de and ˇe in the current channel is usually O.1/. Nearly 25 years later full

PIC treatments of the 2D reconnection problem showed from their reconstructed
pressure tensors that cylindrical symmetry about the local magnetic field direction
was interrupted in the layer thought to be reconnecting (Hesse et al. 1999). As shown
in Fig. 2.2 analysis of PIC information also demonstrates that the departure from
cylindrical symmetry of the perpendicular eigenvalues P?;e;j of the electron pressure
tensor was shown by the enhancements of A;e ¤ 0 near and around X and O
points suggested by the projection of field lines from contours of the flux functions;
indications of weaker violations of A;e along the separatrices are also shown in this
figure (Scudder 2008).
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Fig. 2.2 Demonstration of patterns of A;e from PIC simulations, demonstrating their ability to
label interesting field topologies, indicated with contours of field lines from the flux function.
Most intense incidences of A;e are shown to radiate from the saddle point. Symmetric weak guide
geometry indicated. Nonetheless, enhancements also occur along the separatrices and near O point.
Figure reformatted from Scudder (2008)

A good portion of the complexity of describing collisionless magnetic recon-
nection is caused by the theoretically challenging parameter regime of the current
channel, possessing kinetic scales: LEDR < �e ' de << �i ' di: Since the collision
times are so long this is also the regime where the plasma transits the scale of
the current channel long before coulomb scattering can play a role, making the
fluid description and its closure problematic. This parameter regime rules out many
traditional descriptions for a plasma, such as two fluid approximations with possible
finite Larmor radius corrections, since neither of the species is magnetized. Vlasov
fluid treatments simplified by enforcing various invariants along characteristics are
also crippled with a heavily restricted number of conserved quantities; for those that
can be used they apply only to special geometries. Nothing short of full integration
of the self consistent equations of motion for electrons and ions in the evolving
electric and magnetic fields is appropriate for theoretical analysis. Fortunately
Particle in Cell (PIC) computations are now increasingly being performed in full
3D with modern peta-scale computers. Valiant attempts to extend fluid descriptions
into this area have been made, but invariably they are hard pressed to describe the
evolution of the pressure tensor well, since the needed non-local closures are just
not available to truncate these moment hierarchies.

By following the equations of motions of macro electron and proton “particles”
and then reassembling their statistical mechanics as a function of space, the PIC
approach avoids the irksome problems of closure faced by all reduced closure
approaches. The fluid moment equations using the PIC supported plasma moments
are then used to understand the phenomena that have been elucidated by eschewing
unjustified closure schemes. As with all models there are limitations for PIC models
involving number of integration time steps and unwanted collisional effects of
macro-particles. With care these limitations can be minimized while making good
use of the resolved particle behavior across the narrow current channels.
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2.4 2D Reconnection: Training Wheels

In this section thresholded diagnostics are identified for features that can be asso-
ciated with the inner electron diffusion region, EDR. The 2D geometry possesses
a built in “ground truth” since it has a flux function that allows the behavior of
the in-plane topology of B to be interrogated. In particular, the magnetic field in
the plane of spatial variations is determined solely by the z component of the vector
potential, Az.x; y; t/, which is the flux function. The comoving derivative of Az in the
electron rest frame determines the rate of reconnection (cf. Appendix 1). Contours
of Az.x; y/ are field lines (cf. Appendix 1). The description of reconnection in 3D
is made more complicated by the absence of a flux function when variations in all
three dimensions are allowed.

Our approach is to first theoretically show in the controlled 2D PIC environment
that interesting thresholded quantities associated with the defining properties of
reconnection are observables, and then to show visually and statistically that these
observable quantities can be used to recover much that the flux function tells the
theorist analytically. The advantage is (1) that the physics of these observables is
not limited to 2D reconnection, while (2) the leverage of a flux function is a artifice
that only works for 2D reconnection modeling, but in 2D it can confirm or deny
our approach as finding the interesting region where frozen flux is violated. An
additional simplification is that the global rate of magnetic reconnection can be
determined in 2D geometries from DAz=DtjUe D �cRez at the saddle point. In 2D
this quantity has been compared favorably (Scudder et al. 2015a) to the frozen flux
rate of Eq. (2.7) from Faraday’s Law by forming the curls, r � Re, directly from
PIC variables. While the approach using the curl of Re is overkill in 2D, it provides
a way in 3D simulations to inventory locales of frozen flux violation where the flux
function is not available to help evaluate the value of our thresholded quantities
discussed below (Scudder et al. 2015b). As we show in the subsequent sections the
observables discussed here also highlight interesting places in 3D and they suggest
hints of global conditions of 3D reconnection mentioned in the introduction.

2.4.1 MacMahon and Electron Demagnetization

Vasyliunas’ insight suggested that the EDR (in 2D) is a place where MacMahon’s
systematic expansions for the underpinnings of MHD fail. MacMahon’s motivation
for the commonly used gyrotropic pressure tensor of MHD relied on single particle
Guiding Center ordering (Northrop 1963): gyro radius over scale lengths are
assumed small and frequencies of time variation described are low compared to
the ion cyclotron frequency. In his mathematics there are actually three expansion
parameters that are assumed simultaneously small which we will assign the names
ı; � and � . These conditions reduce (MacMahon 1965; Hazeltine and Waelbroeck
1999) to the above casual summary, but their explicit specification provides one
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immediate benefit: two of them are shown to be observables with the present state
of the art instrumentation of space plasma packages.

MacMahon’s three assumed small expansion parameters for each species, k,
were:

ık � cjE?;k C Uk � B=cj
w?;kB

D
c
ˇ
ˇ̌Rk;?

ˇ
ˇ̌

w?;kB
<< 1 (2.19)

�k � 2�jZkeUk � Ej
˝c;kkTk

<< 1 (2.20)

and

�k � !

˝c;k
<< 1: (2.21)

In the above order these required conditions are that (I) the perpendicular electric
force felt in the k’th species rest frame is much smaller than the magnetic force
on the thermal speed particle of that species; (II) the energy gain per species gyro
period is small compared to the averaged gyrational energy; and (III) the frequency
of time variation studied is slow compared to the cyclotron frequency of the k’th
species.

Condition III has already been discussed in the beginning of this section, but the
ordinary summary for condition I of this regime, �k=L << 1, does not explicitly
appear in these conditions. Using the electrons as the example, this condition is
implied as may be seen by using the leading order term of the Generalized Ohm’s
law for eneRe ' �r � Pe to restate (I) as

c.I � Ob Ob/ � r � Pe

enew?;eB
' < w2?;e >1=2

˝ceL?
D �e

L?
; (2.22)

where L? is the cross field scale length has been used to approximate

j.I � Ob Ob/ � r � Pej ' nem < w2?;e >
L?

:

It is important to emphasize that relations in Eqs. (2.19)–(2.21) above require
the electric field to be measured directly; proxies for the electric field such as E '
�Uj � B=c where the Uj are either the electron or ion bulk velocity do not contain
the information available from a direct, high quality, and calibrated measurement
of E. This may be seen since using such an approximation immediately implies
that ıj � 0 yielding the attendant erroneous conclusion that the spatial scales of
the system are infinitely large. On the contrary, such an inference is the circular
corollary of not introducing ambient information about all of E, rather than the ideal
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approximations for it that are often used, but contain no sub MHD scale information
that characterize plasmas with gradients and reconnection current channels in
particular.

Bonus 1: The really good news is that conditions (I, II) without approximation
are directly measurable with the present state of the art plasma and fields
instrumentation in space. Even when Ek is not measured, condition (I) can be
determined. Furthermore, ık and �k can be measured without measuring any
lengths, nor determining any geometry as are involved in more traditional length
determinations (cf. Appendix 3)

Bonus 2: This means that to measure lengths in the plasma one only has to
compute the species gyro radius and its form of ık, which only requires the
measurement of the commonly available E? to infer:

L? ' �k

ık
; (2.23)

The hidden sensitivity to length in Eq. (2.23) comes, of course, from having
measured the electric field used in ık. Accordingly, the length inferred by this
process is across the magnetic field. In the ideal MHD limit ık ! 0 and it
correctly suggests the scale free MHD world view.

Bonus 3: The form of these dimensionless expansion parameters are interesting
for our “thresholdless” problem of the properties that characterize magnetic
reconnection, like the violation of the “frozen in condition”, Re ¤ 0. The MHD
postulates are violated when condition I is violated, which implies

jRe;?j
B

>
w?;e

c
; (2.24)

establishing the values of jR?;ej that would seriously violate the frozen in
condition of MHD. In the solar wind, for example, the RHS of Eq. (2.24) is 0:003.
In terms of the wind’s thermal Mach number, Me, we determine

jRe;?j > M�1
e jE?;swj ' 10mV=m; (2.25)

where we have assumed U D 400 km=s, B D 5 nT and Me D 0:2, which are
all typical in the solar wind. In this same regime the perpendicular components
of the divergence of Pe would suggest jRe;?j ' 10�7jE?;swj; thus, it would
be difficult to satisfy Eq. (2.25) in the solar wind proper. The principal reason
for this circumstance is the half AU scale length of the electron pressure in the
unstructured solar wind.

Bonus 4: The energy gain expansion parameter �k constrains parallel and perpen-
dicular parts of Re, viz

�k D 4�c

w?;kB

�
Mk;? � Rk;? C Mk;kRk;k

�
<< 1 (2.26)
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where Mk;q is the q’th component of the electron thermal mach number of the
flow. It should also be noted that with MHD ordering the first term in Eq. (2.26)
is formally zero; however, in the EDR this term can be important and must be
retained for exploration for circumstances where � > 1. (However, if this first
term is experimentally found to be important away from current channels there
are experimental errors in the observables used, since routinely this quantity
should be consistent with experimental zero.)

Equation 2.26 can be rewritten as a condition on how big a parallel electric field
can be before violating the MHD ordering. Using k = e for specifics

�e D 4�ıe

ˇ
ˇ̌Me;? � ORe;? C Me;k

Ek
jR?;ej

ˇ
ˇ̌
<< 1: (2.27)

Clearly the limit of Eq. (2.27) on Ek is proportional to jBj, being proportional to
ı�1

e . Thus, detections of Ek “bigger than my instruments sensitivity level”, while
interesting, are not sufficient to show that MHD ordering is violated until �e > 1

is demonstrated. Such limits will be different in the magnetotail than at the forward
magnetopause, or auroral zones.

The other insight from this form is that MacMahon’s parameters are potentially
interdependent when ıe ' 1 and the non-ideal electric field and electron flow are
not orthogonal. Within the current channel evidence exist from PIC that �e and ıe

can be correlated, but generally are not as MHD ordering becomes more prevalent
and ıe relaxes to zero, attended by E? � U?;e ! 0.

Bonus 5: For frozen flux slippage to be innocuous its time scale should be slow
compared to the electron cyclotron frequency

�˚

˝ce
D

ˇ
ˇ
ˇ
�c

Z
�

�

�

�

Z

C

Ob � r � Reda

< B > A˝ce

ˇ
ˇ
ˇ ' �e

ıe

Lr�
' ı˛e << 1; (2.28)

where Eq. (2.23) has been used and the scale of the gradients of the curl indicated
by Lr�. If this scale is estimated also from the gyro radius and Eq. (2.23) then
˛ ! 2 in Eq. (2.28) . If the Lr� saturates at �e, then ˛ ! 1. Equation 2.28 is
in the form of the � condition III of MacMahon [cf. Eq. (2.21)]. As shown below
in Fig. 2.22 electron agyrotropy has just the same scaling, A;e / ı˛, flipping
between 2 and 1 as agyrotropy intensifies.
Thus, Eq. (2.28) can be rewritten in a form that clearly restates Vasyliunas’
insight, but now from the vantage point of 3D:

�˚

˝ce
� A;e: .3D/ (2.29)
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The arguments leading to Eq. (2.29) also suggest that MacMahon’s condition III
is also rendered “observable” through A;e. We define the observable ��;˚ �
˝ceA;e and have calibrated ��;˚ against direct determination of �˚ in a 3-D PIC
simulation to determine the scaling of Eq. (2.29) to be

�˚ D 0:80��;˚ 0:685 � �˚.˝ce;A;e/ (2.30)

In this way the new quantity �˚ becomes a calibrated observable proxy in 3D
for the unobservable rate �˚ of frozen flux violation.

Bonus 6: Another possible measure for thresholding the strength of the violation
of frozen flux that has recently been used with PIC codes is

�˚ �
ˇ
ˇ
ˇ

�˚

Dln�˚=DtjUe

ˇ
ˇ
ˇ /

p
3�˚

˝ceıeMecos�
p
2C Ane

� ��;˚ : (2.31)

In this expression Ane is the electron anisotropy, and cos� is the dot product
between unit vectors of the electron’s flow and spatial derivatives in the
convective derivative in the denominator of the definition of�˚ . The motivation
for the form for �˚ is that

�˚ ' �˚

�transit
D �transit

��
(2.32)

determined by the ratio of the time scale, �transit, for the electron fluid to transit
the scale of the local frozen flux violations to the time scale of the frozen flux
violations, �� . The idea behind this condition is that it takes time for the electron
mechanics to react to the frozen flux violation which already measures these
violations in its rest frame. The natural yardstick for �˚ is then the rate �transit

at which these violations were traversed. It is conceivable that narrow regions
of extreme frozen flux violation can be rendered innocuous by passing across
them rapidly; or, conversely that slow traverses can enhance slow rates of frozen
flux violations. This approach explicitly acknowledges that weak frozen flux
violations may not be informative for the location of reconnection sites, where
we have shown that frozen flux violations are substantial, that is with �˚ > 1.

Finally, theoretically thresholded �˚ is rather difficult to evaluate directly even
from PIC variables; by consensus �˚ is unmeasurable using the current state of
the space instrumentation (since �˚ is). However, the extreme RHS of Eq. (2.31)
suggests a test for an observable proxy between �˚ and an observable ratio, ��˚ ,
given by

��;˚ D
p
3A;e

ıecos�Me
p
2C Ane

; (2.33)

that does not require curls of Re for its evaluation, but requires a well calibrated
electron detector on a single spacecraft. Studies of the correlation between ��;˚
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Fig. 2.3 Correlation from 3D
PIC between the observable
�˚ and the unobservable �˚

that when greater than unity
locally identifies regions of
strong frozen flux violation
that appear to be necessary at
a 3D reconnection site. From
forth coming reference
Scudder et al. (2015b)
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and �˚ using 3D PIC codes have determined the following calibrated form for this
proxy:

�˚ �
� ��;˚
18:13

�1:921 ' �˚; (2.34)

which shows that ��;˚ tends to overestimate the desired size of �˚ ; the calibration
afforded by Eq. (2.34) can be used with observables to emulate the unmeasurable
�˚ . The precise constants of this correlation are specific to the resolution of the
PIC simulation used. The correlation between Log10��;˚ and Log10�˚ is also
very strong, but is not calibrated for determining sites of �˚ ' 1. The excellent
correlation �˚;�˚ using Eq. (2.34) is shown in Fig. 2.3 which was performed with
over 1.28 billion determinations across the entire 3D PIC simulation discussed
below. A flotilla’s measurements of �˚ could help delineate the context of the
regime as shown below with Fig. 2.18.

2.4.2 “Observations” in 2D PIC of � and �

An example of using these diagnostics is shown in Fig. 2.4, where color contours of
frozen line violation, �" and thresholded values of �" variation are shown from a
2D anti-parallel PIC simulation. White curves denote projections of magnetic field
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Fig. 2.4 Top: Colored contour shows Log10�" with superposed contour (black) of �e D
maxfıe; �eg in black with downhill direction indicated by flags. (B): Same region in larger context,
with the same isocontours of �e indicated on top of Log10�". The color contours in Bottom are
determined by operations that may be performed on 3D simulations. When �" > 1 this method
finds the saddle point (known here in 2D) to be the reconnection locale. The black contours also
show that MacMahon’s assumptions are strongly violated in the same vicinity of the saddle point.
The �e diagnostic and �" reenforce one another’s implications. Reproduced with permission for
the November 2015 Phys. Plasmas, 22, 101204, Copywrite 2015, AIP Publishing LLC (Scudder
et al. 2015a)

lines in the plane of variations. Larger values of both variables are concentrated
near the saddle points indicated by the field curves, but extend well away from
them in certain directions. Isocontours of �e D maxfıe; �eg at 0.3 and 1 are
superposed in black on the color contours (flags denote the downhill direction);
they clearly encircle the saddle point indicated by the pattern of the projections of
the magnetic field. The contiguous region of enhanced demagnetization, �e > 1,
clearly envelopes the peak region of descending intensity of �" and clearly frames
the region of Log10�" > 0 which is where �" > 1. The contours of �" D 1

also clearly differentiate between innocuous and significant frozen flux violations,
agreeing that the important regions encircle the saddle point from the flux function
and pointing to the complementary regions as being innocuous. �" out along the
separatrices and in the exhaust of the reconnection patterns are several power of
10 below its above unity size near the saddle point. The frozen flux slippages
along the separatrices, while present, are thus anecdotal, and do not suffice to
identify the separatrices as reconnection sites. The flux function underscores the
correctness of this inference. Nonetheless, there are some hints of demagnetiza-
tion in the vicinity of the separatrices, reenforcing the insufficiency of reporting
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non-zero demagnetization, by itself, for identifying regions where significant frozen
flux violations, as is occurring when �" > 1 about the saddle point. We return to
this point in the discussion section.

While the pattern of theoretically interesting color contoured variables in this
figure can be determined with PIC variables, they are presently unobservable using
present state of the art measurements from space platforms. Only the information
involving ıe and �e that went into determining the black contours of the thresholded
demagnetization condition, �e, are observables. This figure demonstrates that these
observables do provide needed information for diagnosis of such regions; however,
even the topography of �e is not a direct observable. As a scalar �e.t/ would be ready
observable; using a flotilla of spacecraft measuring �e simultaneously perhaps the
variation of �e.x/might be inferred for limited areas. Being dimensionless and with
some background in PIC studies of this type (as a function of guide field strengths
and asymmetry) in situ diagnosis of regimes may be facilitated.

2.5 Macro Signatures of Demagnetized Electrons

The signatures of electron demagnetization just discussed involve using measure-
ments of the electromagnetic field components in the electron rest frame. The
indices of electron demagnetization imply thresholds for the size of jRe;?j=B and
Ek=B. In this section we deduce further moment level corollaries of demagnetized
layers that can be assessed without measuring the electric field and refer the reader
to recent more detailed examples in the literature (Scudder et al. 2015a,b; Scudder
2015).

2.5.1 Agyrotropy A;e

A way to detect agyrotropic electrons is to compute the symmetric tensor which
measures the average velocity space variance of the distribution function perpendic-
ular to the magnetic field direction:

@ij D< .w � Ob/i.w � Ob/j >; (2.35)

where w is the electron velocity in the electron rest frame and <> stands for
a velocity space average over a temporally unaliased velocity distribution. Such
measurements are best performed by detectors that do not wait for the sensors to
reorient by one half spin to obtain their full solid angle coverage. This tensor has
only two non-zero eigenvalues, since the third vanishes with the magnetic field as its
eigenvector. If its two non-zero eigenvalues are not equal the distribution is certainly
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not gyrotropic. As shown in Scudder (2008) the two non-zero eigenvalues of @ are
given by

�˙ D ˛ ˙ p
˛2 � 4ˇ

2
; (2.36)

where ˛ D Tr @ and

ˇ D �.@2xy C @2xz C @2yz � @xx@yy � @xx@zz � @yy@zz/: (2.37)

Then agyrotropy, A;e is defined to be

A;e D 2
j�C � ��j
�C C ��

; (2.38)

which ranges between the gyrotropic limit of 0, and the planar limit of 2. For this
measurement to be geophysically interesting its size must routinely be demonstrated
to be small and only enhanced in layers with current channels as implied by
the magnetic field profile. The experimentally routine values of A;e away from
current channels reflect the state of calibration of the detection system and must
be established prior to “detection” of A;e ¤ 0.

An alternative characterization of electron demagnetization is sensed by the size
of the irreducibly tensorial part, �, of the electron pressure tensor, Pe;ij, defined by
the operation

� � Pe;ij � abibj � .TrPe � a/

2
.ıij � bibj/; (2.39)

where a D Ob � Pe � Ob. If the plasma is gyrotropic � is the null matrix. There are
many ways to judge the size of a matrix. The matrix � essentially describes the
variations of the pressure different from being cylindrically symmetric about b.
As a matrix � contains information about the symmetry breaking in three eigen-
directions that have no a priori connection to b. Unless those eigen-directions are
computed, inventories of the size of this symmetry breaking are not unique.

A scaled version of the Frobenius norm of � has also been suggested to estimate
the size of � (Aunai et al. 2013). The Frobenius norm of � is the square root of the
sum of the squares of its eigenvalues and the recently proposed alternative for A;e is

Aue D
2

q
˙k�

2
k

Tr Pe
: (2.40)

Other equally frame invariant measures that could be used to measure the departures
represented by � are the geometric mean of the absolute value of the eigenvalues
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Fig. 2.5 Correlation of A;e

and Aue showing that these
two apparently different
measures are generally in
agreement, especially for the
bigger values. To guide the
eye the red line iy D x C xo is
included with origin set by
the highest probability point
in the 2D histogram. From
forthcoming reference
Scudder et al. (2015b)

compared to the average eigenvalue of Pe

Aue2 / 3 3
pjDet �j

TrPe
(2.41)

or the straight ratio of determinants of � and that of the entire pressure tensor:

Aue3 / jDet �j
Det Pe

: (2.42)

Figure 2.5 shows the correlation of A;e and Aue using over 1.28 billion estimates
in a 3D asymmetric guide example (Daughton et al. 2011), showing that the two
proposed indices of agyrotropy produce very similar information, especially when
the selected observables are largest.

2.5.2 Electron Thermal Mach Number

To achieve a narrow, electron inertial scaled current channel the electrons of the
plasma must almost exclusively support the out of plane current density, because the
ions are not nimble enough to do so. As derived in Scudder et al. (2015a) Ampere’s
equation implies that the electron thermal Mach number, Mez; in the out of plane
current channel should be of order unity, or more precisely

Mez � ıe

ˇe

p
1C S2

(2.43)

where S is the ratio of guide field to interconnection field strength well away from
the current sheet. Equation 2.43 is derived assuming the magnetic profile is linear
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near its reversal with a scale L suggested by the crossing orbits of the electrons.
The scale of the current has been taken to be L D p

de�e , motivated by Parker’s
early considerations of particle dynamic studies at current sheets (Parker 1957); the
electron ˇe in this formula is determined at the scale length L from the null using
the reconnecting components of B only. Various combinations of ı ' 1 and ˇe " 1
suggest that Me could be order unity within the current sheet.

For the experimentalist detection of O.1/ electron thermal mach numbers
represent a truly unusual circumstance, since even the supersonic solar wind only
has Me ' 0:2, and that value is reduced upon entering the sheath as the flow
speed is reduced and the thermal speed increased. (Here too, the routine agreement
of Ue ' Ui must be experimentally demonstrated for comparable density and
temperature regimes before the detection of large Me is defensible.) In the one
resolved electron diffusion region reported to date Me > 1 was reported (Scudder
et al. 2012) as reproduced below in Fig. 2.13.

2.5.3 Convergent Electric Fields

Models of reconnection invariably have converging electric fields caused by the
unmeasurable space charge in the layers that exist to induce the ions to come
towards the separator. These electric fields are concentrated normal to the current
sheet and are perpendicular to the guide and interconnection magnetic field com-
ponents. These fields are usually strong as compared with MHD electric fields,
but their ability to demagnetize electrons depends on ıe > 1. This demagnetizing
condition becomes E? > B.nT/w?;e=c, which in observational units implies

E?.mV=m/ > 0:55B.nT/
p

T.eV/: (2.44)

At the magnetopause this condition becomes (with 50 nT and 100 eV) a threshold
for demagnetization of approximately E? > 275mV=m, while the MHD inflow
reconnection electric field at Uin ' 0:1MA has a size of Erecon ' 2:5mV=m.
Macroscopically, the convergent pattern (cf. inset (c) Fig. 2.8) is unusual correlative
information. Before reaching their peak strengths such fields will cause electric
drifts in the electrons, until disrupted by their demagnetization.

As distinctive as the convergent electric field pattern may be, the inference of
electron demagnetization from this asymmetric pattern would require measuring
values of E? more than 100 times the reconnection MHD electric field. In the
presence of asymmetric reconnection with Bsh < Œ1 � 4
Bsp the measured normal
electric field is also asymmetric with jEx;shj < jEx;spj. The observations are
consistent with comparable, but very small, demagnetization on the two sides of
the current channel. Below, symmetric and asymmetric current layers are illustrated
that show this range of asymmetries in the converging electric field strengths.
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2.5.4 Electron Anisotropy

In the layers adjoining the low density side of the electron diffusion region there is
a zone where the electrons, though still magnetized, are bouncing back and forth
in a parallel electrical potential, gaining energy from the parallel electric field while
moving into a weakening magnetic field. Conservation of the first adiabatic invariant
causes rather large electron anisotropies to occur while the electrons still remain
magnetized, again because the numerator of � is increased while the denominator
decreased. Electron anisotropies as high as 8–10 are seen in PIC simulations (Le
et al. 2009; Egedal et al. 2012). A recent resolved EDR gave evidence for electron
temperature anisotropy of nearly 8 (Scudder et al. 2012) shown in Fig. 2.13 below.

2.6 Overview of Observables

The relationship of our thresholded observables and theoretical quantities of
magnetic reconnection are identified in Fig. 2.6; in addition, the logical progression
of these techniques from 2D into 3D geometries is also shown. Proceeding from
left to right we have shown that the comoving time rate of change of the flux
function, DAz

Dt jUe , agrees with the reconnection rate determined from Eq. (2.7) in 2D
simulations (Scudder et al. 2015a). With 2D simulations we can determine the rate
using the 2D peculiar flux function approach and via the r �Re and Eq. (2.7), which
is available in either 2 or 3 dimensions. We then show that the region of enhanced
�˚ agrees with the saddle point of the flux function. We also see that this same

∇ × Re = 0 Λe ≥ 1 Electron ProxiesFlux Function
(2D) General (3D)

Flux Slippage
e, e, A∅e, Me, Ane

Simulations

in situ Observations

RECONNECTION

1 2 3 4

Improving Diagnosis of Reconnection

Az(x, y) ΥFrozen

E ds

A∅eds
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? 5
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GCT
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Fig. 2.6 The links between theoretically interesting quantities (boxes 1–3), and observable ones
including the new ones (box 4), � and � proposed in Scudder et al. (2015a) to generalize the
determination of the local rate of frozen flux violation and its significance in 3D. Far right rectangle
(5) suggests some global theoretical diagnostics of interest, including the squashing index 
 that
we suggest has an observable proxy, 
 0, in this chapter. See text. From forthcoming article Scudder
et al. (2015b)
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region is one where ıe and �e are misordered, showing that the thermal electrons
are demagnetized there. In box 3 we explore with � what is the necessary threshold
for �˚ to be big enough to be “dynamically important” and thus indicative that the
observer is in the region like the X point region of 2D reconnection. Box 4 correlates
the evidence for the primary and secondary signatures of electron demagnetization
with this conclusion both in 2D and 3D simulations. In box 5 we briefly touch on
local signatures of global squashing 
 properties that are beginning to be explored
with 3D PIC simulations.

2.7 Benchmarking Thresholded Observable Quantities

In 2D simulations the flux function conveniently summarizes the changing topology
of B projected on the 2D plane of variations. With the flux function information
(available in PIC) as a backdrop, we now look at the thresholded observable
spacecraft diagnostics deduced from PIC simulations to show that they, too, can
find what the flux function knows all too well. The idea is that in 3D there is no
flux function, so these new diagnostics (which do not depend on the dimensionality
of the reconnection layer being studied) have the potential to supply auxiliary
information (usually provided by the flux function in 2D) that can be accessed
when studying 3D sites occurring in PIC or nature. In addition, the ability to locally
determine �˚ via the r � Re gives us a control (like the flux function) that can be
determined in 3D simulations to have an idea where frozen flux violations are taking
place and, by transitivity, to evaluate the thresholded quantity �˚ ’s ability to label
regimes where demagnetization is dynamically important.

Our approach in this initial sub-section analyzes frames from 2D PIC simulations
of anti-parallel reconnection, where a flux function is available, to show that ı; �;�
contain information similar to that reflected in the flux function.

2.7.1 2D Anti-Parallel

The thresholded guiding center theory expansion variables of Eqs. (2.19)–(2.21)
for an anti-parallel simulation are shown in Fig. 2.7 with the 2D projections of
the magnetic field lines (white) superposed. This column of contours is framed at
the top by the unobservable rate of frozen line violation �" and its dimensionless
variant, �" (bottom). The domain of vigorous frozen line violation occurs when
Log10�" > 0. In the top panel black contours of �e Dmaxfıe; �eg D Œ0:3; 1
 are
superposed with flags that point “down” hill. These contours, indicative of strong
electron demagnetization, neatly enclose the region of maximum �", as well as
the yellow regions in the bottom panel where �" > 1. According to our 3D
capable approach the bottom panel suggests that dynamically important frozen flux
violations occur where�" > 1 in precisely the same locations where the observable
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Fig. 2.7 Microscopic signatures of electron demagnetization from reference Scudder et al.
(2015a). See text for description. Note the differential compression 6:1 of the horizontal and
vertical axes. Anti-parallel, open PIC simulation of reconnection with dio D 20deo. Separate panels
discussed in text. Reproduced with permission for the November 2015 Phys. Plasmas, 22, 101204,
Copywrite 2015, AIP Publishing LLC (Scudder et al. 2015a)
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MacMahon indices of demagnetization are significant, and in a saddle point region
of the 2D available flux function.

The middle three panels of Fig. 2.7 are all observables: MacMahon’s first two
perturbation parameters clearly show they are not small compared to unity in the
saddle point region. The third panel is visual proof of Vasyliunas’ deduction that
agyrotropic Pe is required in this saddle point area for collisionless reconnection to
occur. The double ribbon pattern of A;e seems to reflect a spatial localization of
demagnetization as if the outer ribbons are turning points in orbits that concentrate
agyrotropic disruptions of phase space density. The channel of large ı, for example,
is narrower than is the double ribbon of A;e. Since the channel has scales well under
the gyro radius the consequences for the fluid moments and the pressure tensor will
be felt over a broader spatial scale commensurate with where the electrons begin to
sense the field again. This can be seen better in Fig. 2.9 where the true maximum
peak of the ribbons of A;e occur rather precisely when �e < 1, which reflects the
increasing magnetization of the disrupted electrons leaving this inner area.

These data support the idea that the saddle point area where significant frozen
flux violation is occurring (using r � Re) are places where the electrons are indeed
demagnetized, while identifying the same locale where the flux function has a saddle
point.

Manifestations at the macroscopic moment level of underlying circumstances
where the electrons are demagnetized are shown in Fig. 2.8. The top panel shows
the strongly varying electron thermal mach number, peaking near Me � O.1/,
that reflects the electron inertial scaled current channel and that the ions cannot
contribute significantly to the drift. This signal is so extraordinary that it should
be routinely expected if a case is to be made that the EDR has been traversed;
such a strong signature is not known to occur elsewhere where in situ samples
of astrophysical plasmas have been made; even through shock waves Me << 1

is typical. The anisotropy signature (e) is not directly that of demagnetization of
the electrons, but the reverse: it reflects the manipulation of the pressure anisotropy
by the strong parallel electric field along the separatrices coupled with electrons
cooling as they move into weaker magnetic fields. The principal signature is the
unusually large pressure anisotropies compared to that more typically seen in well
sampled locales such as the solar wind, magnetosheath or magnetosphere, where
electron anisotropies are rarely outside of the range 0:5 < Ane < 2. If larger
electron anisotropies than this range are encountered when crossing current channels
indicated by B, they should be evaluated for evidence of an exit from a demagnetized
region. In the antiparallel geometry, as here, these layers can be seen on both “sides”
of the current sheet, whereas they occur preferentially on the low density side of
asymmetric reconnection layers, especially favoring low ˇe and guide geometries
(cf. Sect. 2.7.2, Fig. 2.10). The middle three panels illustrate other features of the
layer: (1) their departure from charge neutrality (b), although this is not presently
thought to be observable; (2) the pattern of converging electric fields along the
inflow normals which has been observed (c). These converging electric fields owe
their size to the space charge in the layer, but they appear also to be causative of the
agyrotropy seen in the electrons (which is contoured on top of the colored E profile).
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Fig. 2.8 Macroscopic observables associated with the reconnection layer as discussed in the text;
same data as in Fig. 2.7. Reproduced with permission for the November 2015 Phys. Plasmas, 22,
101204, Copywrite 2015, AIP Publishing LLC (Scudder et al. 2015a)



2 Collisionless Reconnection and Electron Demagnetization 67

The short scales of the transition and the strong electric field allow this electric field
to do work on the gyro motions of the electrons. Ordinarily crossed E and B fields
cause electrons to E � B drift, provided the electrons remain magnetized which they
do not across the EDR. In such a regime all components of E can do net work on
the electrons and contribute to �e.

An observable indication of this effect at work is to compute the angle � between
the perpendicular electric field and the nearest perpendicular eigenvector of pressure
tensor (d). Commonly � << 25ı in regions when A;e is seen to be enhanced. This
same condition allows the perpendicular electric field to enhance �e, thus keeping
this index high, reflective of it being disordered with respect to MacMahon’s
assumptions. (See Scudder 2008 for more details.)

The simultaneous profiles of the reconnection layer along the inflow and outflow
symmetry lines are provided in Fig. 2.9. Comparing the top and bottom panels
allows the ratio of inflow to outflow region of demagnetization to be determined for
this symmetric anti-parallel case. Using �e ' 1 one determines a ratio of integrated
full widths for inflow to outflow to be 1:75de W 48de, which is 1:75de W 2:4di,
where local skin depths have been used to account for the variation of the density
across the profile. The abrupt decrease in the �e < 1 along the exhaust signals the
remagnetization of the electrons in the exhaust. This accompanies a strong braking
of the electron’s exhaust flow speed as they must now respect and gyrate about the
strengthening normal magnetic field across the exhaust. This braking also causes
some electron heating to occur (not shown) and is the cause of the two zone picture
of the outflow region of the EDR (Karimabadi et al. 2007).

2.7.2 2D Symmetric Guide Geometry Diagnostics

Diagnostics for the 2D symmetric guide geometry are also shown in the panels
of Fig. 2.10, where a guide field 0.5 that of the interconnecting magnetic field is
used with mass ratio 360. The out of plane guide field adds a new asymmetry to
the electrodynamics that is especially clear across the exhausts where a preferred
separatrix line occurs, so that of the two lines that define the separatrices, one
of them becomes preferred and negatively charged as a result of the newly
remagnetized electrons in the exhaust feeling a �jejUe � Bguide=c force that rather
promptly encourages the electrons in the exhaust to veer up against the preferred
separator. This process leaves the full width of the exhaust with a non-uniform
character, with more electrons to one side than the other. The ions are not as
magnetized in the exhaust, nor are they travelling initially as fast as the electrons,
so there is a polarization of charge. This separation of charges causes a secondary
electric field across the exhaust, which with the guide field, produces a large scale
component of E�B along the exhaust that assists in bring the ions up to their
terminal Alfvén speed as they become demagnetized. The exhaust channel for the
electrons is asymmetrically confined to the vicinity of, but inside of, this preferred
separatrix arm whose location is delineated by the flux function.
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Fig. 2.9 Top Diagnostic
profiles on inflow symmetry
axis; Bottom on exhaust
symmetry axis of Fig. 2.8.
Reproduced with permission
for the November 2015 Phys.
Plasmas, 22, 101204,
Copywrite 2015, AIP
Publishing LLC (Scudder
et al. 2015a). dio D 20deo in
this simulation
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The presentation shows a mixture of diagnostic quantities across the plane
(Fig. 2.10) and then focuses in Fig. 2.11 on statistically histogrammed properties
found in the layer (defined by the dotted lines in Fig. 2.10d) inside the exhaust
separatrix known from the flux function.

The statistics show that peak values of MacMahon’s �e > ıe, but that there is
a strong demagnetizing spike near the center of the preferred arm superposed on
a generally enhanced demagnetization along the preferred arm, including general
enhancements of A;e. Throughout and along the preferred arm significant frozen
flux slippage is seen as in our LHDI simulation in Fig. 2.14 below. In agreement
with the flux function’s assessment of the topology, our thresholded level� remains
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Fig. 2.10 Diagnostics of 2D Guide geometry S=0.5 as discussed in the text. Diagonal lines
indicate region where further details and diagnostics are presented in Fig. 2.11. Reproduced with
permission from the November 2015 Phys. Plasmas, 22, 101204, Copywrite 2015, AIP Publishing
LLC (Scudder et al. 2015a)
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Fig. 2.11 Symmetric Guide Bz D 0:5By (Daughton et al. 2006). Insets discussed in the text. Colors
refer to harmonic (green), max(red), min(blue), variances (black bar) about mean (black dot) cf.
text. Distance d is measured along the center diagonal line in Fig. 2.10c,d, in units. Fig. 2.10d in
units of the local ion skin depth. Dashed cyan line in inset (b) is the cross over regime for �e ' 1.
Reproduced with permission from November 2015 Phys. Plasmas, 22, 101204, Copyright 2015,
AIP Publishing LLC (Scudder et al. 2015a)
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below unity along this arm and does not suggest that frozen flux slippage is at the
level of a reconnection site. The preferred arm’s slippage has a rather pronounced
termination at ˙4dio along the preferred arm; it also has a significant depression
near the center of the arm that is caused by the symmetry of this layer (cf. Scudder
et al. 2015a).

A sequence of simulations were done with variable guide field strengths, keeping
the interconnection fields the same. While the reconnection rates were observed to
be about the same, the level of demagnetization seen at the separator systematically
decreased with increasing guide field. In the guide field geometry the conserved
reconnection electric field has a strong parallel component, that essentially is an
imposition by MHD of Ek much stronger that usual. In addition, the magnetic
field has a component along the desired direction of the current channel, giving the
current density in the sheet a significant parallel component. In this sense the guide
field geometry requires less demagnetization while forming the narrow current
channel of the desired intensity, as compared with an anti-parallel geometry. It
appears to be the case that less agyrotropy was actually needed to gain access in the
solution to the out of plane current needed by the boundary conditions. Nonetheless,
Vasyliunas’ insight still holds, agyrotropy was still required to support the layer, it
was just not as strong as it is in the anti-parallel case. In this sense the anti-parallel
geometry while simplest to analyze may be the most complicated as far as gyro
orbits. Graphs of these effects are illustrated elsewhere (Scudder et al. 2015a).

2.7.3 2D Guide Asymmetric

Most magnetopause crossings are observed with field strengths and particle densi-
ties asymmetric about the current sheet. A fortuitous crossing allowed the EDR to
be resolved with the Polar spacecraft that has been diagnosed with the approaches of
this chapter (Scudder et al. 2012). Despite the actual 3D geometry of the encounter
a 2D asymmetric guide (S D 1) simulation was conducted. It was not possible to
achieve the full density asymmetry witnessed in terms of density contrast. A profile
through the simulation was found that agreed well with the size and spatial ordering
of the observable MacMahon expansion parameters determined from the Polar data
that analyzed E; B and plasma data. The simulation was post processed in terms of
the above observable parameters and a pseudo time line was created to move through
the spatial mesh of the simulation to gather a possible time series to compare with
the spacecraft time series. The fortuitous encounter occurred at very low relative
speed (1.6 km/s) and knowledge of this speed and geometrical determinations
allowed time intervals to be converted into spatial intervals, providing length scale
assignments for event durations. The ordering of the features recorded in the pseudo
traverse of the layer in the simulation had many features seen in the data including a
large angle shearing of the magnetic field with (different) but electron inertial scale
length linear ramps in the magnetic field profile. The profile from the simulation is
shown in Fig. 2.12.
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Asymmetric 2D PIC Predictions

Fig. 2.12 Profiles of in plane magnetic field strength
p

B2x C B2z , density ne, and electron
anisotropy Ane in panel (a) and electron thermal Mach number Me;?, index of electron demagne-
tization �e and electron agyrotropy A;e in panel (b) for diagnostic quantities across an asymmetric
2D simulation used for the identification of the resolved EDR in Scudder et al. (2012). Note
(in panel b) that the A;e profile is asymmetrically situated relative to the mach number’s indication
of the maximum current layer. The anisotropy is on the lower density side of the EDR of the
asymmetric layer and its size is anti-correlated with the decrease of A;e from its layer peak value.
Figure adapted from reference Scudder et al. (2012)

As mentioned before the very low ˇe on the magnetospheric side led to an
expectation of very high electron pressure anisotropy (> 8), that was recorded by
the Polar Hydra instrument, as was significant agyrotropy (> 1) and Me > 1:3.
In addition, significant electron heating was found in the reconnection layer. The
high anisotropy seen in the simulation was used as an ordering parameter to shuffle
the time appearance of the observations as a time series to become a spatially
ordered portrait of the layer. This is reproduced in Fig. 2.13, showing the strong
quantitative correspondence between the variables observed and expected in the
simulation using the reordered data’s traverse (Scudder et al. 2012). Particularly
extraordinary were the high electron anisotropyAne > 7, electron thermal mach
number, Me > 1:3, and agyrotropy A;e > 1:2. These values are previously
unheard of extremes for electrons sampled in situ in an astrophysical plasma, yet
their sizes were corroborated by the PIC simulations. Prominent electron heating is
also observed in this crossing, that is clearly different from the thermal state of the
plasma on either side of the density transition.

2.7.4 Calibrating �˚ in 2D

Since �˚ is our only thresholded indicator of serious frozen flux violation in 3D,
it is important to certify in controlled 2D simulations that the theoretically defined
�˚ > 1 is properly calibrated so that �˚ > 1 and �˚ < 1 can be relied upon
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Fig. 2.13 First
experimentally resolved
electron diffusion region in
space plasma that was located
between vertical black line
and vertical blue line
(Scudder et al. 2012). The
black line is the experimental
location of the separator, the
blue is the exit into the
magnetized inflow region on
the magnetospheric sensed by
the abrupt decrease of the
density indicated in panel (j)
(Scudder et al. 2012). Peak
PIC suggested values
indicated by dotted horizontal
lines in each panel. Mach
number, anisotropy, A;e, and
strong electron heating in
panels (f), (b), (d), and (h),
respectively of the layer meet
or exceed PIC levels
expected. Figure adapted
from Scudder et al. (2012)

Sc
ud

de
r 

et
 a

l. 
, 2

01
2

10.
Electron Diffusion Region

to make the distinction between significant and innocuous frozen flux violations. So
far this calibration has been done by comparing with the rates from the flux function,
�˚ .

A 2D simulation was designed (Scudder et al. 2015a) to assure that our
interpretation of �˚ was calibrated, with 1 as the numerical value that signifies
“significant frozen flux violation” as at a 2D saddle point which would be called
the EDR. A 2D current sheet geometry was initialized with anti-parallel fields
perpendicular to the x-y plane that contained all spatial variations; a sinuous, but
narrow current interface possessing electron inertial scales separated the two regions
of oppositely oriented fields. Had a third direction of variation been allowed this
layer would have commenced reconnecting; by the dimensionality of the simulation
reconnection was geometrically precluded. For this geometry the spatially varying
exhaust arising out of a possible stagnation point would have had to flow along
the out of plane (symmetry) direction where no gradients where allowed. The time
dependence observed in the simulation was vigorous since the regime was Lower
Hybrid Drift unstable. As shown in Fig. 2.14 the subsequent evolution included non-
zero frozen flux violations with detectable enhanced variations of �˚ centered on
the current ribbon, very large A;e > 1, and narrow, enhanced ıe ' 1 (not shown),
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Fig. 2.14 LHDI simulation
designed to test �˚

interpretation (Scudder et al.
2015a). 2D simulation
conducted in geometry where
magnetic reconnection and
“significant frozen flux
violation” cannot occur. The
output of the test is what
values does the computation
of �˚ produce, summarized
in histogram form in the
bottom panel, and spatially in
the uppermost panel. Middle
panels show the variation of
the component of B that
would be the interconnecting
component if the geometry
would allow this process.
Spatial variation of A;e

demonstrates that prominent
demagnetization occurs in the
narrow channel. But �˚ � 1

for essentially all grid points,
showing that the absence of
�˚ > 1 is indeed consistent
with this simulation where
magnetic reconnection is
geometrically prohibited.
Reproduced with permission
for the November 2015 Phys.
Plasmas, 22, 101204
(Scudder et al. 2015a)

confirming the electron inertial scales of the current channels. As shown in the
bottom panel of Fig. 2.14 �˚ was generally not zero, but its distribution from all
32,768 cells of the simulation terminated rather precisely at unity; with only 0:02%
of cells indicating mild violations of this threshold. Of these eight offending cells,
only one had an adjacent cell in its eight surrounding cells that also exceeded unity.
This lack of reenforcement suggests that this level of violation of the threshold could
be viewed as noise in calculating�˚ since the calculation is dependent on the ratio
of two computed numbers in each cell that involve curls and gradients of curls.
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From this test it is concluded that the �˚ > 1 threshold is a consistent approach
to use when looking for “interesting” locations in 3D simulations, especially
given its proofing (cf. Fig. 2.4) to locate saddle points in 2D simulations where
reconnection was known to be underway. Below,in Sects. 2.8.1 and 2.8.2, we
demonstrate within 3D simulations that �˚ and �˚ are appropriately thresholded.

2.8 3D Reconnection: Exploring Reality

With the loss of the flux function in 3D, �˚ becomes the major model independent
tool when looking with computer simulations to identify frozen flux violations.
Unfortunately direct measurements in space of �˚ are impractical, even from a
suite of spacecraft such as Cluster or Magnetospheric Multi-Scale (MMS). Above
we have suggested an observational proxy that may fill this gap. However, for
theoretically benchmarking thresholded diagnostics in 3D within PIC simulations
�˚ becomes our reference of choice; for the time being it assumes a similar
theoretical importance for 3D that the flux function has for 2D modeling.

A recently discussed 3D PIC simulation with guide field equal to the asymptotic
reconnection field strength that is asymmetric (Daughton et al. 2014) is used to
further study the role of the proposed diagnostics and � for finding the interesting
layers that could be detected by state of the art spacecraft instrumentation. This sim-
ulation was initialized as a Harris sheet and spans the intervals 35di � 85di � 85di

in the x, y, z directions respectively; it used a mass ratio of 100 and was initialized
with a profile invariant along the guide (z) field direction. The longer directions of
the simulation were along the nominal exhaust (y) and guide field (z) directions
with the narrower (x) dimension along the inflow. Higher values of x are initially
at weaker density and stronger magnetic fields, providing asymmetric boundary
conditions for the current channel formation that is much like what occurs at
planetary magnetopauses.

The variation of the current density in the (x-y) inflow-outflow plane (half way
along the guide field’s z domain) is color coded in Fig. 2.15 at four different times
in the evolution. Gross changes to the current density structure occur during this
limited time. The superposed yellow contour boundaries were determined for each
slice using detailed information in the PIC solution in the form of tagged tracer
electrons followed during the simulation (Daughton et al. 2011, 2014). The mean
value of the tracer tags of all the particles in a cell reflects the dominant origin of
the particles, since the tracers from “outside” of the initial Harris sheet carry an
immutable tag value of 1 or �1 depending on their initially being on one side or
the other of the Harris current sheet. The yellow contours correspond to the mean
value of this label being Fe D ˙0:99, effectively delineating (within the code) the
evolution with time of where the “initial electrons on opposite sides” of the current
sheet have come to be mixed as enabled by the magnetic reconnection occurring
somewhere in the simulation, including the possibility that this mixing occurred at
some other locale different from the cell possessing this average value. However,
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Fig. 2.15 Time evolution of jJj from 3D solution viewed in the inflow-outflow plane midway
along the guide field direction at four indicated times (Daughton et al. 2014). Yellow contours
delineate mixing boundaries determined from IC electrons tagged by their spatial positions at
t D 0, cf. text discussion. While this boundary is unobservable, its determination within PIC
does delineate the boundary between unconnected flux regions (above and below this curve) and
interconnected flux tubes between the yellow curves where electron mixing is in evidence. In this
sense these curves are analogous to the unobservable 2D separatrices and should be the boundaries
between classes of observables, where interesting observable kinetic signatures might be expected.
It should be noted that these yellow curves do not necessarily indicate mixing where the curves are
seen, but that plasma on either side of these boundaries have been mixed “somewhere” prior to
being seen where they are inventoried. Reproduced with permission from May 2014 Phys. Physics
of Plasmas, 21, 052037. Copyright 2014, AIP Publishing LLC
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a mitigating factor is choosing the contour values with absolute value so close to
unity, since at 0.99 this represents only a small admixture from the opposite side of
the initial current sheet of 1 % of electrons in the cell; this makes such a location
near to where mixing is first apparent. The smaller the value of jFej contours, the
less direct is the inference of the possibility that such a contour is a site of local
exchange between the two regimes; conversely small values of jFej indicate more
extensive mixing of the initially segregated sides of the Harris current sheet.

Across the four time steps the regions of enhanced current density have evolved
and the yellow hour-glass contours have widened perceptively with time, indicative
of more integrated electron mobility over its past dynamics. This labeling has been
quantitatively used (Daughton et al. 2014) to determine a fast reconnection rate
for the simulation, further proofing its capability to differentiate unconnected flux
(outside the yellow curves) from interconnected flux inside the hour glass. That
calculation gave confidence for using the yellow curves as a separatrix in this 3D
geometry, a property deduced in 2D from the flux function alone. Interestingly, in
either geometry the separatrices, being topological, are not local observables.

For a given time step one should imagine determining the yellow contours
on each 2D x-y plane of the 3D simulation. At the grid resolution the union of
all such contours sweep out two surfaces, that crudely look like the two sheets
of a hyperbolic cylinder, with its cylindrical axis generally along the guide field
direction. The hyperbolic shape is generally correct in each plane along the guide
direction, but the surface is more nuanced in the guide direction than found in a
formal cylinder swept out by a hyperbolic cylinder of two sheets.

While tagged electrons are certainly undetectable in space, their delineation of
the yellow “hyperbolic cylinder” in this study with the other results of this simula-
tion can check the reliability of our approach: does�e > 1 continue to work in 3D as
the identifier of where significant frozen flux violations occur, and only inside these
yellow boundaries as places? If it does, then finding observable corollaries with
�e > 1 in the code becomes increasingly viable as an observational strategy for
identifying 3D reconnection sites in space without an a priori geometrical template
of how it is actually organized (as is provided by the yellow boundaries and tracer
tags, which are clearly artificial and not knowable from state of the art spacecraft
measurements).

The discretized cylinder jFej D 0:99 provides a generalized label for the
“inside” versus the outside of the current channel “wedge” of the reconnection
pattern. With time the current channel grows, filaments and becomes distorted, even
in the plane presented in this picture. There is even evidence that there may be
more than one intense current channels, aka “electron diffusion region(s)” present
in the system. It is distinctly possible that unlike 2D the union of all sites that
are reconnecting may neither be compact, interconnected, or organized in a planar
arrangement predetermined by the geometry of the initial conditions. The detection
of flux ropes in these 3D simulations (Daughton et al. 2011, 2014) that are forbidden
in 2D makes it highly likely that the generalization of the EDR in actual 3D
circumstances may not be a deformed, but still compact, geometrical version of
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Fig. 2.16 Outflow-guide section of 3-D simulation contrasting unobservable level contours of
jFej D 0:99 (cyan) (determined within PIC by following individual macro-particles) with
observable contours of �˚ , the proxy for “strong” local violations of frozen flux defined by �˚

(Scudder et al. 2015b). Regions with jFej < 0:99 are indicated by the downhill flags on the cyan
contours. Consistency is shown in the plane along the guide field direction of �˚ and �˚ being
large only in the regions where jFej < 0:99, even when this geometry is rather intricate. See text.
From forthcoming paper Scudder et al. (2015b)

the EDR witnessed in 2D, but formed with disconnected sites in its proximity. We
will show examples of this below.

2.8.1 Does �˚ ' �˚ Agree with Fe Boundaries?

Having traced the mixing of the macro particle electrons within PIC we can contrast
the generalized cylinder boundary defined above by jFej D 0:99with the regions of
the simulation where�˚ > 1 and�˚ < 1which tests the conceptual importance of
�˚ for finding locales of different aggregate mixing in the simulation. Since �˚ '
�˚ the unobservable jFe D 0:99j boundaries and the topology of �˚ are contrasted
in Fig. 2.16. An outflow guide (y-z) cut of the simulation results for �.xo; y; z/ are
color contoured, with superposed cyan isocontours of jFej D 0:99. The plane of
this section of the 3-D simulation is 4:4dio behind the narrowest thinning of the
generalized cylinder. This section of the cylinder defined by jFej D 0:99 alternately
cuts into the exhausts at either y extreme and is in the inflow regime near the middle
of the y domain shown. The wrinkled 3-D nature of the cylindrical surface of mixing
defined by jFej D 0:99 implies a rather complicated system of cyan contour curves.
On each contour the direction “downhill” (towards more mixing) is indicated by the
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flags pointing locally perpendicular to the isocontour. Of particular importance is
that downhill is the direction to “inside” the 3D wrinkled cylinder; inside according
to jFej is the domain of electrons having been (locally or non-locally) mixed from
their initial separated states of the Harris initial state of the simulation. Within such
a mapped perimeter one should find those possible regions where�˚ ' �˚ should
show up as enhanced. This figure shows that the colored observable contours of
Log10�˚ > 0 respect the cyan pattern, with essentially no significant occurrence
in the darkest “outside” regions of jFej and all the enhanced values of �˚ � 1

inside the boundary painstakingly defined by following the tags of electron mixing.
Further, the colored contours outside (in the inflow) are all weak, i.e. innocuous.
It should be also noted that the �˚ also shows gradations of values with similar
shapes as implied by jFej despite the two measures having no direct mathematical
contact except through being diagnostics of the single vs aggregates of equations
of motion followed by the PIC simulations. Many sections of the 3D simulation
have been viewed by the authors in this way, showing the strong reproducibility
of the domain of mixing jFej < 0:99 (as here) of electrons using the observable
proxy �˚ > 1 as a marker for the same condition; conversely, “outside” regions
invariably have values of �˚ < 1. Note that innocuous frozen flux violations also
can occur “inside” the mixing cylinder boundary where the frozen flux violations
may be strong or innocuous.

2.8.2 Does �˚ ' �˚ Makes Sense in 3D?

To finish the validation of the concept of � we present statistical summaries over
the entire 3D simulation frame of the correspondence permitted by comparing
with painstaking maps made possible with jFej. Using one time slice of the 3D
simulation the probability distributions of thresholded frozen flux violations�˚ are
illustrated in Fig. 2.17; the red distribution for regions outside the yellow cylinder
are more compact in extent than the distribution for the inner region (indicated in
black). Using over one billion determinations the red distribution has P.�˚/ > 1

only 0:04% of the time and a most probable value of 0:02 << 1. The “inside”
black distribution of P.�˚/ has a higher mean value although it, too, is still less
than unity. However, a significant fraction (1.8 %) of inside cells have �˚ > 1.
Three points are important here: first, the fraction of outside points with �˚ > 1

is very nearly the same as the 0:02% seen in the 2-D LHDI simulation where
reconnection was geometrically prevented. Secondly,�˚ > 1 in the inside volume
is still rare, occurring with a filling factor of 1:55. Thirdly, �˚ is not a binary
indicator, possessing plausible variations and a continuum of values throughout the
simulation that are typically well below unity; this realization reenforces the need
for a finite threshold value (like �˚ > 1 for “dynamically interesting frozen flux
violations” for use when hunting for the electron diffusion region.
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Fig. 2.17 Percentage Probability of occurrence of �˚ segregated by cells outside (red), versus
inside (black), the yellow “separatrix” boundaries of Fig. 2.15 (Scudder et al. 2015b). Inventory of
the 1.1 billion cells showing the rareness of the condition �˚ > 1. A visual presentation of this
scarcity in a given plane is presented in Figs. 2.15 and 2.18 below. This figure is from a forthcoming
paper Scudder et al. (2015b)

Fig. 2.18 �˚ in section of 3D simulation (inflow-outflow plane) showing regions where
Log10�˚ > 0; �˚ > 1 indicative of a serious level of frozen flux violation as has been witnessed
in 2D at saddle points of the flux function (Scudder et al. 2015b). These bright yellow arcs
are generally in the regions of the hourglass boundaries (light cyan curve) of Fig. 2.15 and are
candidate layers where reconnection could be identified. This figure is from a forthcoming paper
Scudder et al. (2015b)

The inflow-outflow plane’s spatial structure for�˚.x; y; zo/ (Fig. 2.18) illustrates
new complexity in the 3-D inflow-outflow plane analogous to that mapped in
the 2-D geometry of the bottom inset of Fig. 2.4. Not only are there locations
of significant �˚ > 1 at the narrowest constriction of the jFej contours, there
are many other locales where �˚ > 1 in other localized regions both along the
separating cyan curves, but also well inside these curves. This contour section was
made midway in the simulation volume along the guide axis. This figure also shows
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the continuum character of this diagnostic; the “outside” region generally has non-
zero, but innocuous frozen flux slippage levels with �˚ < 1; these regions have
longer scales that those at a 2D electron diffusion region, but the scales in the inflow
are not infinite, and the curl operation that analyzes the Re.x; y; z/ sense these finite
scales. As in 2D the weak frozen flux violations that occur in these regions are not
dynamically important. This is a clear situation where thresholded parameters are
required to make decisions.

The inner region of the cylinder shows a higher mean value of �˚ for at least
two reasons: (1) as a confined region two of its scale lengths are shortened by being
spatially confined between the yellow hyperbolas; (2) there are regions within the
yellow cylinder (but not outside) where there are “significant frozen flux violations”.
The probability distribution above shows that in a given plane these violations
appear sparse, yet they clearly occur in groupings near the cyan boundary and at
places where O points would have occurred in 2D reconnection. [Topological work
using this simulation has also identified a separator near the narrowest constriction
of the jFej surface and O points inside the expanding wedge of the cylinder (Dorelli,
2014, private communication)]. In addition, there is a new population in the sample
comprised of �˚ > 1 with values as high a 10–12 with a smooth probability
up to those values. Note these regions also include the narrowed down region of
the two hyperbolas, that would be the remnant of the initially loaded “separator”
line. Statistically this argues that on average as few as 1:8% of the cells in three
dimensional “wedge” region between the yellow cylinder have strong frozen flux
slippage. Clearly, there are smaller domains within the wedge where this fraction is
significantly higher. Thus the average “filling factor” for�˚ > 1 is misleading.

Visually one can see in Fig. 2.18 that the brightest values of Log�˚ > 0, i.e.
�˚ > 1, occur within a general hour glass shape, with a large number of order unity
arcs found along, but inside, the hour glass shape, although not exclusively. These
bright arcs are often in interrupted lanes in this projection, but their overarching
property is that the frozen flux violation is extraordinarily high in these localized
regions. These enhancements are reminiscent of Fig. 2.4 of the 2D guide situation,
where enhancements of �˚ are coherent and rising out of the background along
(but inside of) the preferred guide separatrices (delineated by the flux function);
however, along the mathematical separatrices in 2D we showed that �˚ was still
way below unity and strongly contrasted it with the central EDR region where the
�˚ > 1, the flux function topology displayed the X point geometry, and guiding
center parameters were all misordered. However, in 3D this morphology is different
with enhancement of �˚ just within the cyan mixing curves as large or higher as
occurs at the nominal remnant of the initial Harris sheets separator line seen in this
figure.

The lane structure of�˚ in this plane is often comprised of curvilinear segments
that are often not continuous. It should be kept in mind that any 2D contour
presentation is of the signatures apparent in only this plane of the 3D solution. Any
three dimensional structures, or curves, that are not parallel to the inflow-outflow
plane (of this picture) can appear to start and stop where the otherwise continuous
curves pass through the chosen plane for contouring. Further, a ribbon when piercing
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Fig. 2.19 Correlations of the observable A;e proxy for the theoretically important, but unobserv-
able rates of frozen flux: �˚ and �" (Scudder et al. 2015b). Note the wide dynamic rate of frozen
flux/line violations across the simulation. Sites of frozen flux/line violation cannot be defined in
a yes–no binary way. Summary of 1.1 Billion cells in 3D simulation. From forthcoming article
Scudder et al. (2015b)

the presentation plane could leave a curvilinear track that reflects more its angle of
attack to the presentation plane than its true length. From this vantage point the
possible patterns of �˚ when contouring in the plane can have patterns that can
generally include dots, line segments and even longer curves depending on this angle
of inclination.

2.8.3 A;e Organizes �j in 3D

In the 2D geometry we have argued that Vasyliunas’ insight led to suggesting that
the rate of frozen flux violation �˚=˝ce ' A;e. We argued that this same result
remains in 3D, assuming that electron demagnetization is the common enabling
concept in 2D and 3D. In this section we show that this relationship is maintained
in 3D simulations. Figure 2.19 shows with over 1 billion readings in a 3D histogram
that strong A;e organizes both strong line �" and flux �˚ violations. The graph
illustrates with its color the mean value of A;e that occurred in the pixel with
coordinates Œ�"; �˚ 
. Clearly there is general agreement that the rate of frozen flux
and line violation increases with increased size of A;e.

Figure 2.20 uses a two dimensional histogram of occurrence between �˚ and �
to support the expected linear correlation based on arguments above. Œ�˚ ;˝ceA;e
.
For larger values the best fit power law for the suggested relation is 1.1. Given
the curls of Re involved in �˚ vs the local electron pressure tensor eigenvalue
calculations for the agyrotropy, this is very good agreement. It should also be noted
that �˚ is not an observable with the present state of the art space measurements,
while the vertical axis involving A;e and ˝ce is an observable
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Fig. 2.20 Inventory from 1.1
billion pixels in 3D PIC
showing �˚ � A;e as a
correlation between an
“unobservable” � “proxy”
appears reasonable,
especially when the signals
are strongest (Scudder et al.
2015b). Red segment shows
correlation when signals are
strong. From forthcoming
article Scudder et al. (2015b)

We suggest that the variable combination � :

� D ˝ceA;e ' �˚ (2.45)

produces an observable proxy for the theoretically important, but unobservable
unscaled rate of frozen flux violation, �˚ . Figure 2.21 visually makes this point
in two panels, with the top one from the 3D PIC variables giving a direct spatial
portrait of �˚.x; y/, while the bottom panel shows the suggested proxy using other
PIC variables that are presently within the state of the art from space observations
(such as on MMS). Close replication of details and structures are seen in observable
proxy � that are seen in the theoretically more direct map from �˚.x; y/.

2.8.4 A;e / ı1$2 in 3D

While MacMahon suggested that the irreducibly tensorial parts of P should scale
like ı2, for weak ı, Fig. 2.22 shows (on either sides of the peak probability)
suggestions of two red power laws, scaling as ı2e for frequent, but smaller than peak
amplitudes, to ı1e scaling at higher than peak values. A similar trend is also seen in
a large collection of estimates from data (Rodriguez et al. 2008; Lopez 2015) Thus
the scaling reported in Fig. 2.20 of �	 / � 1:1

e ' A;1:1e , at the largest values of �˚
takes precedence over the small amplitude expectation that �˚ / ı2e .
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Fig. 2.21 Top Close up 2D
section near separator of 3D
simulation using �˚
determined from the r � Re

versus Bottom the � proxy
for �˚ that is presently
routinely observable; from
forthcoming paper Scudder
et al. (2015b)

Fig. 2.22 Log–Log
correlation of A;e scaling
with ıe makes transition from
quadratic to linear
dependence as ıe increases
(Scudder et al. 2015b). Red
lines are power laws of index
2 and 1 through the peak of
the occurrence distribution.
Near and just below the
occurrence peak the
organization favors quadratic
dependence as suggested by
MacMahon, but for larger
values than at the peak a clear
break occurs toward
A;e ' ıe. From forthcoming
paper Scudder et al. (2015b)

2.9 Reconnection Layers in 3D

The variation of the intensity within the 3D PIC solution where 0:001 < �˚ < 3

is shown by the color contours in three orthogonal isometric sections in Fig. 2.23,
with insets a–c corresponding to inflow-outflow, guide-outflow and guide-inflow
sections, respectively. The sections are made along dotted lines indicated in their
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Fig. 2.23 3D Isometric, orthogonal sections of Log10�˚ passing near to the original Harris
separator line (x D 315). Geometry of panels (a-c) as extracted from the 3-D simulation cube
as indicated in the isometric inset. Note localized enhancement of �˚ > 1 shown most clearly in
inset (b). Also clearly shown is the localization of this region in the guide direction and that the
curve of maximum dissipation is inclined to the simulation coordinates. From forthcoming article
Scudder et al. (2015b)

orthogonal insets. The contours are color coded according to the common logarithm
and the striking variations of color indicate the significant range of variation of this
index. Bright yellow regions indicate locales where �˚ > 1 and are candidate
regions for being reconnection sites. Care should be exercised when interpreting the
size of the reconnection layer until three orthogonal projections about a given locale
is inventoried. The location of the jFej D 0:99 boundaries were pierced by these
planes are indicated by light cyan curves. The inset in the upper right hand corner
shows the relation of the three sections of the solution shown in the three panels that
surround it.

The upper rectangle (inset a) is the inflow-outflow variation as available from
a 2D simulation, but here it is literally a horizontal slice of the 3D solution made
perpendicular to the guide field direction, color coded by the variation of �˚ . The
square panel shows a planar cut that includes the outflow direction on the horizontal
and the guide field direction on the vertical. The tall rectangular panel (c) under the
inset represents a cross section whose horizontal axis is along the inflow (or thin
dimension of the 3D rectangle) and the vertical along the guide field direction. All
three sections are isometric sections so that squares in any view contain the same
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Fig. 2.24 3D Isometric, orthogonal sections of Log10�˚ along cut plane slightly displaced into the
high density region, showing the banded enhancements of �˚ on the mixing-separatrix surfaces
being cut in both exhausts. Geometry of panels (a-c) as extracted from the 3-D simulation cube as
indicated in the isometric inset. From forthcoming article Scudder et al. (2015b)

area. The outflow axes of these cuts is near to the initial separator of the Harris sheet
and slightly displaced toward the low density side behind the separator of the Harris
sheet.

From these three views we immediately see that the enhanced locations of �˚

are largely near, (1) but inside, the quasi-cylindrical boundary mapped by particle
tags indicated here by cyan curves where it cuts the planes of these sections where
electrons show evidence of local or non-local mixing (during their prior history)
with the outside regime; and (2) occur in a pattern across the rectangular section,
with undulations that are organized in a chevron pattern at nearly 45ı to the guide
field direction. From the side view of the vertical rectangle the high �˚ regions
occur all up and down the guide field direction, but the width of the layers of
significant frozen flux violation layer that are non-uniform along the guide direction,
even showing locales of deep circulation into the low density side.

A 3D section slightly displaced towards the inflow region on the high density side
(in front of the Harris separator) is shown in Fig. 2.24, that clearly shows the surface
wave type undulations in �˚ that occur generally on the cylindrical boundary
determined by jFej. Note that the chevron markings are inclined in the opposite
direction in this view relative to that previously. The undulations are particularly
pronounced on the low density side of the transition (larger x side of cylinder)



2 Collisionless Reconnection and Electron Demagnetization 87

where they have been shown to be consistent with LHD waves. The striations in
�˚ that follow the ridge wave pattern suggest that large amplitude LHD waves in
3D can induce reconnection in periodic patterns as seen in the yellow regions of
enhancements of �˚ . This phenomena cannot happen in 2D simulations and may
be the cause for spawning flux ropes that have been reported with this 3D simulation
(Daughton et al. 2011, 2014).

In both of these 3D sectional views it is clear that many disjoint sites where recon-
nection is taking place must be considered. No simple model for the occurrence of
the strong frozen flux sites can be anticipated with this level of dynamical freedom.
Well inside the cylindrical mixing surface, there is evidence of multiple strands of
strong frozen flux violations largely parallel to the guide field direction, but showing
evidence of weak helical twists. These layers are in the general areas associated with
the O lines identified previously (Dorelli, 2014, private communication).

Even within these exceptional sites of frozen flux violation, there are intensity
variations of nearly an order of magnitude. These sections also reflect strands of high
�˚ that are rather narrow, but organized obliquely to the plane of these sections.
Some evidence for this type of structuring can be seen in the chevron pattern in the
square inset (b) of this figure.

A careful inspection of this figure reveals the significant number of sites where
�˚ > 1 occur; these sites are clearly not localized at the initial separator of the
initial conditions, although there is a clear spine of�˚ > 1 running down panel (b)
that mimics the current patterns and is in the region identified with a separator in
this solution (Dorelli, 2014, private communication).

2.9.1 3D Geometry of the Sites of Strong Frozen Flux
Violation: Multiple Disjoint EDRs

In this section we examine the locales where �˚.X/ > 1 occur in the simulation,
using this scalar as a measure of the intensity of the serious frozen flux violation.
It has proven useful to compute the polar angles �;˚ about a central point Xo

of the code which we determine as the average of all pixels where �˚ > 2. We
have chosen to divide the millions of these locales into four groups based on their
minimum value of �˚ successively exceeding j D f1; 2; 3; 4g Fig. 2.25 depicts the
location of the polar angles ˚j; �j painted with a color reflective of its j value, that
in order are (1) gray, (2) cyan, (3) green and (4) red. These locales are painted onto
the graph in numerical order so that the nesting of successively stronger regions
can be seen. Together they give an overall impression of the ordered geometrical
distribution of the sites of very strong frozen flux violations. The branch cut of
the ˚j is at 180ı, so that in this coordinate system the nominal outflow jets have
˚exhaust � ˙90ı, while the inflow axes are along ˚inflow � 0; 180� �;�180C �, as
angles measures in the x-y plane. � is the standard polar latitude angle from the Oz
direction of the code which is along the guide field direction.
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Fig. 2.25 Top Loci of polar angles of pixels (about center of pattern) where �˚ > 1 grey; > 2

cyan; > 3 green; > 4 red. Note predominance of strong signatures in four bands at nearly constant
˚ values on either side of ˚ D ˙90ı indicated by vertical orange lines. Bottom The identification
of these four nearly straight ridges is facilitated by the probability distributions in ˚ constructed
by ignoring the � values of the pixels in the top panel. These ridges correspond to the inner and
outer edges of the mixing regions that bound the general exhaust for the central reconnection layer.
From forthcoming article Scudder et al. (2015b)

This figure shows that �˚ > 1 sites are highly structured in their polar angle
locales. Even the weakest signatures (painted in grey) give evidence for lanes
of enhanced frozen flux violation with rather intricate patterns. There are two
classes of these structures: (i) those that occur with high probability in regions
of approximately constant ˚ about ˚ D ˙90ı, that correspond nicely with the
flaring boundaries of the “mixing” boundaries used above to delineate inside and
out of the current layer and (ii) a second group of traces/lanes that reach between
the two disjoint areas of class (i). The lanes of class (ii) appear to radiate from
and converge on “poles” with ˚�; �� coordinates of .�70ı; 125ı/ and .75ı; 50ı/.
As the threshold get larger the regions become more compact, but the regions of
highest �˚ are increasingly concentrated in four layers of nearly constant �˚ that
correspond to half planes from Xo corresponding to the approximate asymptotes
of the mixing boundaries seen in yellow curves in Fig. 2.15 The probability of
occurrence of each group with phase angle ˚j is shown in the bottom panel of this
figure. The strongest �˚ > 4 grouping gives the sharpest probability profile that is
nevertheless consistent with the probability constructed with a lower thresholds.
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Fig. 2.26 Expanded view of contributions in narrow region of˚ < �100ı for one mixing edge on
the high density side of the layer to the left of center, showing the striations of occurrence as widely
dispersed in � but very narrow in ˚ . Ray patterns in grey suggest undulations/waves causing
migration above and below �˚ D 1 thresholds. Rays appear to converge in angle to regions where
�˚ > 4. There are clearly a large number of disjoint hot spots, identified as candidate analogues
of the EDR in 3D. From forthcoming article Scudder et al. (2015b)

By focusing ones attention on one of these indicated azimuthal planes where
there is high occurrence probability further insight can be achieved of the geomet-
rical distribution of these large �˚ sites. If ˚ D ˚� � �100ı, then the selected
points can be vernierly segregated in ˚ in the vicinity of �100ı to show the angular
structure and strands that will be suppressed below when trying to inventory the
spatial distribution of these regions. Figure 2.26 depicts a high resolution slice of
the ˚.�/ distribution found in the near vicinity of the < ˚ < �100ı region. This
picture gives evidence for structures entering and leaving the region of ˚ D �100ı
as would be expected with the curved mixing boundary shown above.

Given the thresholding used to make this picture one can see clearly periodic
disturbances in ˚ interrupted by white as would occur with a wave “train” whose
�˚ was oscillatory with peak amplitudes near 1 C � where � is small. These
“trains” have spatial widths of a few degrees in �, but can extend 10 � 20ı in
˚ before becoming lost in other signatures of a slightly different orientation.

Curiously, many of these “trains” appear to converge on even stronger �˚

regions highlighted in cyan, green and even red. The closer these trains get to the
red regions of intense �˚ the less likely are distinct trains to be seen silhouetted on
the white background, as if the �˚ > 4 regions were the spatial “source” for these
trains? Certainly the most intense regions of �˚ > 3 are seen to be disjoint at this
resolution. The red zones with � > 4 generally extend a few degrees in either polar
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Fig. 2.27 This figure illustrates the latitudinal dependence of the radial distance R.�/ for strong
violations of frozen flux as color coded by the intensity of �˚ . Multiple ribbons of enhanced
violations are shown with typical lengths of 10 � 20dio . Orderly termination of arcs at maximum
radius reflects the variation of the distance to the edge of the simulation box along different �
values. Strongest violations of frozen flux (red) are well removed from simulation boundary. In
this plane the location of the �˚ violations range from 20 � 50dio from the simulation center.
From forthcoming article Scudder et al. (2015b)

angle and tend to be rather compact. In this single half plane there are over 15 such
compact very intense frozen flux regions.

Suppressing the ˙6ı spread in ˚ in Fig. 2.26 we construct a spatial portrait in
Fig. 2.27 of these regions based on the radius, R, and elevation angle,� of the pixel.
In this figure the horizontal axis is� and the vertical axis is the distance R in ion skin
depth units from the assumed center of the 3D occurrence of these flux violations.
The first impression with this format is that there are many ribbons R.�;˚�/ of
reconnection curves, with lengths of order 5 � 20dio. In the longer arcs there is
usually a �˚ > 4 region. The arcs are separated in angle by > 10ı, which at their
distances from Xo imply spatial separations at times of order 5� 15dio apart.

The upper radial curvilinear boundary to these arcs is caused by the finite
simulation box, and serves to show where the strongly enhanced regions of �˚

occur; generally the ribbons and strings enhancements are well away from the
simulation’s boundary and generally more than 20dio away from the center of the
simulation rectangle.35�85�85/dio. These layers primarily occur along the flaring
portion of the “mixing” boundary and correspond to examples of enhanced lanes of
�˚ > 1 seen in Fig. 2.18 just inside the cyan mixing boundary.

Given our demonstration in this chapter that �˚ > 1 is a well calibrated index
of the saddle point region in 2D simulations, and correctly predicts LHDI models
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are not reconnecting when they are geometrically prohibited to reconnect, and given
the agreement between mixed and unmixed plasmas for predicting the incidence of
strong frozen flux signatures, it would appear that there is little room but to suggest
that the ribbon like structures with �˚ > 1 reported in Figs. 2.25, 2.26, and 2.27
are the analogue in 3D of the EDR of 2D magnetic reconnection. These structures
appear to be present in rather large numbers in restricted regions of the current
channel, be 10 � 20dio in length and be concentrated on the mixing boundary that
has been previously identified (Daughton et al. 2011).

2.9.2 EDR Closeup

A close up of a strong �˚ region near the narrowest constriction of the mixing
boundary is shown in Fig. 2.28. The narrow feature depicted in the projected (a)
plane is actually approximately 7dio in length, canted along the guide field direction
with an angle similar to those seen in the chevron strips of �˚ shown above. The
layer remains thin in cross section in the dimensions transverse to this length. In 3D
the signatures of diagnostics in a given plane can look sporadic in that plane even
though the structures are elongated out of the chosen plane. One has the impression
that much of the disjointed curvilinear segments of �˚ seen in plane (a) section

Fig. 2.28 Close up slightly behind separator site of reconnection: orthographic �˚ . Linear
dimensions of the square is 11:64dio; thin dimension of top and side sections are 4:79dio . Geometry
of panels (a–c) as extracted from the 3-D simulation cube as indicated in the isometric inset. From
forthcoming article Scudder et al. (2015b)
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of the orthographic projections represent such projection effects of structures (as
shown immediately above in Fig. 2.25, 2.26, and 2.27) that are smoother when seen
in their “natural” geometry where the elongations are in some optimal plane.

2.9.3 Hints at Local: Global Diagnostics in 3D

The theoretical underpinnings of magnetic reconnection in 3D involves global
properties that clearly challenge an inventory from spacecraft. However, our internal
verifications have begun to show some correspondences between what can be
sampled versus the global quantities that figure in the theory.

One idea is that quasi-separatrix layers are the generalization of the separator
line which can be defined in 2D reconnection that emanates from the saddle point
and is perpendicular to the two dimensional plane where variation is allowed. A
property of these layers is that initially close magnetic lines that comprise these
layers undergo rapid separation from one another in these locations. The implication
is that the cross section of these tubes if they started as circles would become highly
elliptical, that is “squashed” in the process (Demoulin et al. 1996; Titov et al. 2002).
The measure of this squashing involves integrals (cf. Scudder et al. 2015b; Finn et la.
2014) along field lines over distances comparable to the simulation size, making this
assay decidedly non-local and not directly accessible to even a flotilla of spacecraft
making current state of the art measurements. In the top panel of Fig. 2.29 values

Fig. 2.29 Top Global PIC Squashing parameter 
 , Bottom Local inference of squashing 
 0 that
could be deduced by state of the art spacecraft instrumentation and using a local Harris sheet model
to estimate the non-local effects (Private Communication William Daughton, 2015; Scudder et al.
2015b). Color contours are shown with linear scales. Some apparent differences on linear scale are
present. (Right) inset shows the correlations between unobservable global index and local proxy:
ŒLog10
; Log10
 0
, showing their correlation with one another. Note the wide dynamic range of
this correlation on Log10 graph deemphasizes the color distinctions that appear in the contour
comparison using linear scale. From forthcoming article Scudder et al. (2015b)
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for the squashing parameter 
.x; y/ determined from the full 3D variation of the
PIC code are shown (Daughton, private communication, 2014), while the bottom
panel illustrates the proxy value 
 0.x; y/ determined locally using the properties
of a local Harris sheet model to estimate what value might be expected there. This
approach requires use of ıe summarized above as well as making local determination
of normal and guide field geometry along the space track. This figure shows there
is a coarse correspondence between the actual line integrals performed within the
PIC and local approximations to the squashing factor. The principal assumption of
this approach is that the local Harris characterization of the magnetic field at the
observer is the dominant determinant of the squashing factor. Other global local
connections have been identified (Scudder et al. 2015b).

2.10 Big Picture About Finding Site(s) of Magnetic
Reconnection

Our approach to finding reconnection sites with such elusive properties is a form
of using sieves of increasing fineness to find documentable sites where collisionless
magnetic reconnection is underway. A measure of the fineness of the sieve is how
many unwanted objects pass the sieve including your objective. In Fig. 2.1 many
structures pass these sieves that are not reconnection sites, but just structure that pass
a mass flux—which a reconnection layer does also. Ideally the electron diffusion
region would be identified based on there is “no other interpretation” possible for
the data.

We have argued in this chapter that electron demagnetization is sufficiently
rare in the domain of sampled astrophysical plasmas, that it should be used as
a necessary sieve in such identifications after the same sieve on almost all other
plasmas has determined negligible levels of demagnetization. We have also argued
that another macroscopic sieve would involve detecting electron thermal mach
number Me ' 1; such mach numbers are totally unknown in space plasmas except
as theoretically expected in reconnection. Figure 2.1 shows that there are many
objects beyond layers thought to be involved in reconnection that pass the sieve
represented by these tests. The status quo approach can be markedly improved with
these new electron specific sieves. Figure 2.30 gives an overview of the relationships
of these sieves, with the coarser jump conditions of Fig. 2.1 well removed from
identifying the EDR and with more surgical sieves involving electron kinetic
properties as one gets closer to clear identifications. At present the sieves discussed
in this chapter are technically possible and would appear to be an exceedingly
attractive way to reap the investments of so many research dollars represented by
the Magnetospheric Multiscale Mission which seeks to critique experimentally how
collisionless magnetic reconnection “really works” in nature.
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Fig. 2.30 The telescope of scales involved in finding layers certifiably involved in collisionless
magnetic reconnection (Scudder 2015). Outside the frame of this figure are 1 fluid jump conditions
as summarized in Fig. 2.1 of this chapter. Proximity to the EDR in this figure requires tests
of increasing sophistication beyond Hall signatures that are commonplace two fluid features.
Careful assays will require electron specific properties certified by the electrons in the plasma.
Without evidence to show that the measured thermal electrons are demagnetized, there will be no
convincing evidence that the innermost expected current layer of magnetic reconnection has been
traversed. From forthcoming article Scudder (2015)

Appendix 1: Role of Rez ¤ 0 in 2D Flux Slippage

The electric field in terms of the potentials takes the form

E D �r	 � 1

c

@A
@t
: (2.46)

For the observer moving with the electrons, the partial derivative becomes an
advective derivative and E transforms via Galilean relativity while the scalar
potential is not modified yielding

dA
dt

ˇ
ˇ̌
Ue

D �c
�

Re C r	
�
: (2.47)

Since the gradient only has components in the (x-y) plane of the 2D simulation, the
total time evolution of Az is determined by the z component alone of the non-ideal
electric field:

dAz

dt

ˇ
ˇ
ˇ
Ue

D �cRe;z: (2.48)

Since the components of B in the x-y plane set the reconnection topology, and
Bx D @Az

@y and By D � @Az
@x , the time evolution in 2D of the reconnection topology

is controlled only by the non-zero “out of plane component” of the violation of
Alfven’s “frozen in” condition. While a parallel electric field generally makes
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Re ¤ 0, unless Ek Ob � Oz ¤ 0 its violation of Alfvén ’s frozen in condition does
not affect the slippage of flux in 2D.

A side benefit of the existence of the vector potential is that the isocontours
of Az.x; y/ have local normals given by n / .

@Az
@x ;

@Az
@y /. Such normals are always

perpendicular to the components of B in the x, y plane, since n � B � 0 everywhere
in the x-y plane. Accordingly contours of Az provide a simple way for exhibiting the
topology of magnetic field lines, without having to integrate the three differential
equations for field lines to find out where they go. In 3D the answer to such questions
cannot be provided in this way since there is no flux function available.

Appendix 2: The Origin of Two Scales About
the Reconnection Site

The mass asymmetry in a hydrogen plasma shows that the electron momentum
equation is a natural way to discuss the factors that control the electric field and
gives its physics to the Generalized Ohm’s law. For those who have learned MHD as
a one fluid description of magnetized plasmas, there is a path to seeing that nothing
has been lost developing our picture of the current channel with electron myopia. In
the so called one fluid picture that underlies MHD the scales of the system are long,
the currents are weak, so that it is actually true that Ue ' Ui ' U where

U � nemUe C niMUi

nem C niM
' Ui: (2.49)

In this context Alfvén’s ideal approximation shows up in the literature as the
assertion that the magnetic fields is displaced by where the Center Of Mass (COM)
go, which in this approximation is the same as where the ions or electrons go! This
physics is often summarized that the field moves with the ions since they essentially
determine the COM. However, as the scales being explored are no longer infinite,
gradients and current densities occur and are supported by relative motion between
electrons and ions J D ene.Ui � Ue/ and MHD is exported into regions where
the density becomes lower and the binary rate �ei for binary collisions also drops.
The plasma still has many other scales regulated by the density and the magnetic
field strength that keep the system well organized, especially the gyro scales at
right angles to the magnetic field. The time periodicity caused by gyrating about the
magnetic field permits certain adiabatic concepts like � conservation and Guiding
Center Drifts to be useful in the description of the medium. The decreased collision
rate allows the electrons and ions to become uncoupled thermally, promoting the
idea that perhaps it is attractive to forego the single fluid concept because there are
no longer thermally exchanging internal energy efficiently by copious collisions.
If the ions become demagnetized �i=L � 1 the currents that they might represent
can generate emf’s of the Hall variety, that show up in the one fluid’s variant of
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the Generalized Ohm’s Law as J � B forces, that have come to be known as Hall
emf’s. Hall emf’s always occur in the one fluid extended MHD picture when the
underlying physics has become two fluid in character.

A similar situation occurs when describing a shock wave: the momentum laden
ions hurtle across the shock layer, while the agile electrons do an intricate detour
along the shock surface until they cross the shock layer at a different location than
the ions did. In a very real way the magnetized electron’s agile side step carried the
magnetic field along the surface of the shock and delivered it into the magnetosheath
some distance from where the demagnetized solar wind ion had pierced the shock.
The relatively abrupt, but magnetized motion of the electrons allowed them to label
and advect the magnetic field through the shock layer, while the protons, with
convected gyro radii thicker than the shock ramp, became demagnetized there,
lost there hold on their solar wind field line and propagate downstream in the
magnetosheath gyrating about another magnetic field line. Because the ion gyro
radius is larger than the electrons, it loses its ability to follow changes in direction
of B more readily than do the electrons. Central to the idea of particles labeling
or advecting a field line is that the species can “hold on to”, gyrate about, and
label the line in question. Clearly ions have more trouble with this than electrons.
The earth’s bow shock layer is a large amplitude standing whistler wave, a high
frequency extension off of the Alfvén wave dispersion branch with wavelengths
intermediate between �e < � < �i. A whistler is a collective mode (wave) in the
magnetized plasma that owes its existence to the distinctly different mobility of the
electrons at frequencies approaching the electron cyclotron frequency, which is well
above the traditional regime for ideal MHD. It is an example of plasma behavior
enabled in the two fluid regime.

However, all is not as nice as it was with large scale one fluid MHD with
strong collisions. What happens along field lines with gradients of finite scale?
What happens to Alfvén’s picture of the magnetic field frozen into the motion
of the plasma when the plasma decides to have a split personality with electrons
writhing to a different drummer than the ions? There was a degenerate situation
for Alfvén’s ideal MHD, with three fluid velocities essentially the same because
he surmised very weak gradients, very weak current and very low frequencies for
such a theory, making the electrodynamics and the mathematics very simple. In fact
Alfvén could have announced his frozen flux theorem for ideal MHD by remarking
that the electron, or ion or fictional center of mass (COM) fluid carried the magnetic
field—since in his postulated regime there was essentially no difference between
the three possible fluids. But as the frequencies go up and the scale lengths become
finite it is no longer true that the preservation of flux is equally true for the observers
at rest in the COM frame, the ion frame and the electron. Can the concept of frozen
flux persist in the two fluid domain?

The derivation of Eq. (2.6) shows it can be retained until circumstances that cause
r � Re ¤ 0 to occur, at which point the electron flow can no longer presage where
magnetic field lines go.
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If the same type of derivation were done with the ion momentum equation a
similar equation, of equal truthfulness, would be

DB
Dt

jUi D �cr � Ri; (2.50)

where the ion’s non-ideal electric field is given by

Ri D r � Pi C r � .niMUiUi/C @niMUi
@t

eni
: (2.51)

By inspection Ri can have scales as short as the ion gyro and inertial lengths,
�i and di. At the shock when the shock layer is thinner than the convected ion
inertial length L D U=˝ci there will be non-zero contributions from all of these
ion terms. Certainly the ion pressure tensor is non-gyrotropic on this scale through
the layer, and Eq. (2.50) correctly indicates that the magnetic flux will no longer
be viewed by the ion rest frame observer as being conserved. At the same place the
electrons remain magnetized, its dynamic term is quadratically smaller by M2

e , and
the electron rest observer confidently assays that magnetic flux is being conserved
and not slipping in his frame!

While either ion or electron observer’s description of their perception is tech-
nically “correct”, the electron observer’s description can perceive conservation
of magnetic flux down to shorter scales than the ion observer and thus over a
wider range of scales of change, essentially because de D di=42:84. Thus the
electron observer’s decision of frozen flux violation is in some sense the last word
because there is no lighter species able to more agilely follow the contortions of B.
Fortunately, the physicist can pick which frame gives the most information.

A similar situation happens for the plasma as it approaches a reconnection current
sheet. Far away from the layer (like electrons and protons in the solar wind way in
front of the shock) both species agree the magnetic flux is frozen in their respective
frames. However as the plasma approaches the current channel the larger ion gyro
radii “feel” the upcoming gradients earlier than the electrons and their Ri becomes
structured with ion gyro scale and inertial scale length structures, that cause the flux
to appear to be slipping in the ion frame of reference. Meanwhile the electrons, still
well removed in units of their inertial scales from the current sheet, experience
weak gradients with �e=L << 1 so that they remain magnetized and are able to
label and advect the magnetic field and deduce that the magnetic flux is essentially
frozen in the electron rest frame until coming within several electron gyro radii of
the reconnection channel. This is the physical reason for expecting a two zone layer
upon approaching the reconnection current sheet.

Confusingly for students this outer layer, where the ions see the magnetic field as
slipping with respect to Ui, is referred to as the ion diffusion region. The confusion
is that according to the electron rest frame observer throughout this outer region,
the magnetic field remains totally frozen to the electron bulk motion. None of the
mysterious processes that cloud how reconnection happens takes place in this ion
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layer, despite some who title papers about this region as about the “diffusion region”,
leaving the adjective “ion” out of the title. In this sense there is no intrinsic loss of
field line identity taking place in this outer, ion layer.

That the ion rest observer makes such a statement says more about his glasses
than what is happening! It is a two fluid regime. However, this ion inertial layer is
a place where ions are making adjustments that electrons are not making. The ions
are starting to deflect up and around the obstacle, while the electron are undeterred.
This differential response represents a current that implies a J � B Hall electric
field is seen by the ion rest frame and COM observers. In this regime pressure
gradients of ions and electrons start to form. The electrons remain magnetized as
they ExB and diamagnetic drift, and as they do they carry the magnetic field with it,
creating the “Hall magnetic patterns” foreseen in theory (Sonnerup 1979) and found
in superposed epoch modeling with spacecraft data (Eastwood et al. 2007).

It is only within the electron inertial scaled innermost region of the current
channel that the electron rest frame observer detects intense frozen flux slippage;
here magnetic reconnection will take place. If anywhere this is the collisionless
“diffusion” region. It is increasingly common to see this inner region termed the
electron diffusion region (EDR), with the “electron adjective” retained. Although
historically in resistive MHD this was a diffusive layer and the solution of a diffusion
equation, there is no guarantee from the Generalized Ohm’s law that this inner
“electron diffusion region” will have profiles that mathematically satisfy parabolic
diffusion equations.

This discussion has an experimental corollary relevant for those who would
document the behavior of collisionless magnetic reconnection in nature: the phe-
nomenology of the outer ion scale that is called the ion diffusion region is rather
common in nature, occurring whenever two fluid behavior is allowed or required. It
may be necessary for collisionless reconnection, but the detection of Hall signatures
by themselves is exceedingly common. The Hall effects restate that two fluid effects
are “in play” in the plasma. In fact, nearly any current system that is identified
in space will have such Hall effects attending their occurrence. The behavior of
the electrons and ions within shock waves hinge on this differential behavior. The
current that flows is caused by the different paths of the ions and electrons as
they cross the shock. The out of plane Hall magnetic signature in the reconnection
context, is also a well documented feature of the shock layer, representing an out of
the coplanarity perturbation (Goodrich and Scudder 1984).

Appendix 3: Traditional Techniques for Measuring Lengths
in Space Plasmas

Even the most basic conversion of a time interval �t on a given spacecraft to a
length j�xj traversed along the normal to the structure,

�x D �t On � Wrel; (2.52)
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involves two unknown vectors: Wrel, the relative velocity of the s/c sensor to the
layer, and On, the local normal to the surface whose thickness �x is desired. (Both
vectors are required to be known in a common coordinate system.) Alternately,
consider two spacecraft, sampling the “transition” at times t1 and t2 separated by
a known vectorial distance �X D X.t1/ � X.t2/. By cross correlation the times
of the “same” structure may be found t1; t2, allowing �x D On � �X. Such a
determination still requires an experimental determination of the surface normal and
that the front being encountered is without spatial variation direction transverse to
the determined normal to the surface; also hidden in this approach is the assumption
that the structures are not evolving in time between t1; t2 and do not have some
wave numbers that support the structure possessing more time independent than
others! The final painful fact is that the scales expected are short, with �e ' 1 km
at the forward magnetopause. To forestall time evolution between observations,
the spacecraft must be rather closely collocated, which they might not be for key
signatures that require geometrical characterization. With relative motions of order
the Alfvén speed likely, the time resolution for either of these approaches must be
much better than 20 ms and external knowledge of the surface normal and its local
planarity are required to get a well constrained determination. The approaches using
Eq. (2.19) offer a much more direct approach for obtaining scale information that
only involve scalars.
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