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ABSTRACT

The proton temperature profile of the asymptotic solar wind plasma can be modified by four different physical
effects: PdV work, external heat deposition, QD , divergence of heat, q· , and collisional energy exchange with
other species in the plasma. Suggestions in the literature that QD heating is “required” to explain the proton profile
have often been deduced while neglecting qp and energy exchange. Despite the adiabatic approximation q 0p =
having no rigorous justification in low-density plasmas, the simultaneous neglect of energy exchange unnaturally
forces the “need” for QD to balance adiabatic cooling caused by the wind’s expansion. In this paper, the
asymptotic wind proton heat flux is determined which balances the inner Heliosphere’s steady state entropy
equation for the protons, ignoring heat addition and energy exchange. The solutions of the energy equation recover
both the power-law trend and amplitude of the 5 year averaged Helios temperature profiles that were segregated by
speed. The dimensionless skewness  of the heat flow is empirically shown to scale for all wind states below
600 km s−1 as if it were equal to the Knudsen number determined by Coulomb collisions, a relation that is
rigorously demonstrated for an infinitesimal Knudsen number, bridging the unusual adiabatic protons forU 250
km s−1 and the higher speed states of the winds that remain hotter over a wider radial domain. Higher speed states
(U 650> km s−1) may require additional scattering beyond what Coulomb effects can provide, although the
averaged profiles for these speeds are not as accurate as those below 600 km s−1.
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1. INTRODUCTION

From the earliest measurements, it has been suggested that
the proton temperatures in the solar wind were not those
predicted by a spherically symmetric thermodynamically
adiabatic expansion, which has a profile T r r( )p

4 3µ - . In the
initial interpretive Phase 1, spherically symmetric two fluid
models with Spitzer transport could not predict the ion
temperatures observed at Earth for typical wind speeds (Hartle
& Barnes 1970). Historically such observations were inter-
preted as evidence that the protons were being heated by some
external agent(s) not in the modeled equations, with wave
dissipation suggested. The Helios radial profiles opened Phase
2 of the interpretations; they re-enforced the disagreement with
the adiabatic predictions (Schwenn et al. 1981; Marsch et al.
1982) and also noted the different radial behaviors of the wind
as a function of the size of the solar wind speed, U. The long-
lived Helios mission produced over 5 years of data involving
34 separate traverses of r0.3 1⩽ ⩽ AU. In Phase 2, the inner
heliosphere’s proton radial variation versus speed state was
characterized by Marsch et al. (1983), Schwartz & Marsch
(1983), Lopez & Freeman (1986, 1987), Freeman & Lopez
(1985), Hellinger et al. (2011, 2013), among others. Lopez &
Freeman characterized best-fit radial power laws versus U
using all 5 years of Helios data as summarized in Figure 1. The
most heavily oversampled regime was the 300–600 km s−1

states.
The reported inverse radial power-law exponent,

d T d rln lnpg º - , ranged from the “adiabatic” value of
4 3g = (indicated by the red dashed line) at the lowest

speeds seen, to generally much shallower radial variations as U
increased. The purpose of this paper is to explore the possible
range of conclusions that come from such inner heliosphere
observations.

2. PHASES OF INTERPRETATION OF TP(R)

Theoretically, the variation of Tj(r) in the asymptotic wind
regime (U U¥ ) is shaped by 4 factors: (i) work done on its
volume element PjdV (±); (ii) energy deposition/loss Q jD ;
(iii) divergence of heat flux q· j ; (iv) energy exchange ijn
with other plasma components ± , including thermal forces. At
the overview level, Tp(r) is less than 1% of the solar wind
budget in a Mach 10 flow. Explaining and recovering the radial
variation of this small and decreasing fraction requires an
accurate and complete physical picture that is likely to involve
all of the factors listed above.
At times, the proton (j = p) budget has been looked at alone,

as part of the overall turbulent fluid, or as one of two fluid
constituents of solar wind. Confusingly, at different times and
in different papers, various subsets of these four factors for
protons (and sometimes for the electrons subset) have been
explored when interpreting and modeling the solar wind; there
has also been some evolution with time in the assessments of
the importance of the usually ignored terms. At other times,
there has been no clear statement that the paper’s conclusions
were contingent on the omissions of these other factors, leaving
the casual reader with the impression that the paper’s stated
conclusions have no other reasonable interpretation(s). In
setting the context for this paper, a brief overview of the tacit
assumptions of various examples of approaches to explaining
the proton’s observed radial behavior will be presented. This
discussion is not meant to review all approaches, but to
illustrate the current state of the analysis.

2.1. Phases 1–3

Some Phase 1 interpretations proceeded from the observa-
tion that expansion cooling (effect (i)) did not explain the
observed Tp(r), and so heat addition (effect (ii)) is required.
Other interpretations in this phase included two fluid modeling
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including effects (i), (iii), and (iv), using Spitzer closure for
protons and electrons, but neglecting compressive PdV effects
to reach a similar conclusion. In hindsight, such conclusions
are parametric (in the first instance) to being able to exclude the
occurrence of effects (iii) and (iv), or (in the second instance)
to authenticating the correctness of the Spitzer transport used
for both electrons and ions, or (in either approach) to excluding
the role of positive PdV work in the fluid parcels being
modeled.

Phase 2 analysis incorporated the fitted radial power-law
variation fits to the trend of the proton heat fluxes determined
from Helios data, q r( )p

H , and six other parameters in the
internal energy equation, but ignored the pdV>0 effects of
stream dynamics in (i) and did not consider thermal force
forms of energy exchange, enroute to concluding that (ii) the
data still require external heating. Conclusions of this type are
parametric in the assumption that the “...model independent...”
characterizations of the Helios proton heat flux were suffi-
ciently precise to leverage their conclusions. We return to this
assumption below.

Phase 3 of the explanation of Tp(r) has centered on the
possible role of turbulent dissipation in the proton heat budget.
Three branches of investigation have made contributions: (1)
one branch has focussed on modeling the observed features of
the proton temperature anisotropy, attributing it to various
damping effects QD (e.g., Isenberg & Vasquez 2007;
Chandran et al. 2011) of an imposed wave source; (2) another
branch has estimated the energy migration via turbulent
cascades to shorter scales with a lumped parameter description
with a significant list of free parameters that assumes the
protons are the ultimate receptacle of the energy cascade
generated internally by the solar winds (e.g., Zank et al. 1996;
Smith et al. 2001). The dominant sources of turbulence are
modeled from estimates of the lumped parameter effects of
wind shears and pick-up ions. (3) A third branch has used
empirical electron heat flux closures to estimate how the
presumed QD energy introduced to the explain the Tp(r) profile
would need to be apportioned between electrons and ions
(Breech et al. 2009; Cranmer et al. 2009).

All but one of the cited papers in the Phase 3 discussion have
ignored (a) the role of the proton heat flux or argued that the
proton heat flux was ignorable after first modeling the skew of
the VDF as being caused by a delta function moving at the
Alfvén speed along b̂; the one paper that formally retained the
proton heat flux did so with a local closure approximation
much in a local form of Grad, while also retaining the Spitzer
formulation in the lowest corona for the electron heat flux well
outside its domain of validity (see Scudder & Karimabadi
2013). The papers of the Phase 3 discussion also (b) have
neglected the role of compressive heating, (i), in the trended
data used for closure or constraint, (c) have ignored the thermal
force-type exchange terms while sometimes choosing ad hoc
energy exchange rates, and (d) have noted, but otherwise
ignored, the possibility (Dmitruk et al. 2004; Karimabadi et al.
2014) that the turbulent cascades might be interdicted before
depositing their energy in the proton heating and recent
evidence (Marino et al. 2008) that the cascades are not
omnipresent as initial modeling presumed.
Branch 2 and one of the 3rd branch approaches of Phase 3

rely on a system of lumped parameter equations of turbulence
transport that contain a substantial number of free parameters
which are adjusted to reach their conclusions. Among these
parameters are those which mock up the amount of shear
present in the “system,” its symmetries, the rate of local
production of newborn pick-up ions feeding the turbulence
levels, as well as boundary conditions for the domain being
modeled. The pick-up effects according to this modeling seem
to be most pronounced beyond 20 AU. The other driving
mechanism of the turbulence picture is shear, which is most
pronounced with the wrapping caused by stream dynamics
outside of 1 AU. Among the estimates of the second branch is a
semi-empirical digest between 3 and 4 AU that estimates the
energy transfer rate of the cascade to the plasma (Marino et al.
2008). In addition to suggesting that the cascade could not
completely support the simultaneously measured proton
temperature (even if it all went directly there), they also
indicated that the energy transfers attributed to the cascades
were not always present.
The most detailed and extensive radial analysis has been

performed for the Voyager intervals, where incidents of pick-up
ion effects have been identified beyond 20 AU, where Tp(r) is
seen to increase with radius, using careful baselining with 1 AU
observations. The pick-up ions drive turbulence in this regime,
but turbulence caused by shear would appear to be inade-
quately supplied in the inner heliosphere to be effective and is
thus most effective after the stream–stream dynamics start
wrapping up their characteristics, and successive streams and
ejecta start overtaking one another beyond 1 AU.
There appears to be a desire in the literature to homogenize

all of the radial domains of the solar wind’s proton profile as
being determined by wave-driven turbulence, despite the
almost certain diminution of the effectiveness of pick-up ions
and stream driven shears inside of 1 AU. In the inner
heliosphere alternate mechanisms have been examined (e.g.,
Cranmer et al. 2007; Isenberg & Vasquez 2007; Chandran et al.
2011), usually assuming a posited wave spectrum of wave
power at the base of the corona. While the proton heat flux
(effect (iii)) is formally present in Chandran et al. (2011), it is
based on a low-order truncation much in the same spirit as
Spitzer’s expansion, except here it is about an anisotropic ion
distribution. Although the proton heat flux is “...formally..”

Figure 1. Summary of least squares fits to radial power laws, T rp µ g- , for
Helios (1974–1980) as a function solar wind speed state, U (Lopez & Freeman
1986). Error bars and latest updated values are used (Lopez & Freeman 1987).
Intervals of ±50 km about the labeled speed were used for this analysis.
Uncertainties indicated reflect the speed intervals and the reported errors for the
exponents (Lopez & Freeman 1987).
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present, its physical accuracy is unclear for the same reasons
that Spitzer proton transport would be inappropriate. In other
references cited (including in the outer heliosphere), this proton
heat flux competition has not even been considered as a
possible competitor for the turbulence explanation via
effect (ii).

Inner Heliosphere Phase 2 work merged theoretical argu-
ments and radial power-law fits to observed plasma moments in
order to investigate the balance of the proton energy equation
and infer, by subtraction, the missing ingredients that such an
analysis suggests must come from QD mechanisms that
involve heating or cooling of the protons. These calculations
appear at first inspection to involve a complete attempt (except
thermal force effects and compressive effects) to look at the
balance of the proton internal energy equation. However, as
with any experimental arguments, all of these conclusions are
parametric in the assumed accuracy of the key observable
quantities that provide the leverage for the final scientific
evaluation. The proton heat flux qp(r) plays this role in the
conclusions reported by Marsch et al. (1983) and Hellinger
et al. (2011, 2013). As argued in this paper, the systematically
low value of the Helios determination of the proton heat flux,
q r( )p

H , leaves even the structurally complete forms of Phase 2
analysis with no clear conclusions.

2.2. Phase 4 T r( )p Determined by the Proton Heat Flux?

While the Spitzer–Braginskii formulae for heat flow are
readily available for electrons and ions, it has taken some time
to internalize their not being applicable anywhere in the
Heliosphere. Several models retain the Spitzer form for low
altitudes in the corona, which arguably even has the wrong
sense; in so doing, it builds in a significant conduction loss
from the coronal maximum layers back down to the transition
region. Even though these predictions of heat flow are now
known to be unreliable, there remains the impression that their
magnitudes can still be used to estimate their importance. The
theoretical assumption underlying Spitzer–Braginskii is that the
Knudsen number, Kn, of the species is perturbatively small:
K 1n  , which is vacated within R R0.05D   above the
transition region (Scudder & Karimabadi 2013). Spitzer’s
estimate for qe is structurally as well as quantitatively
inadequate. Spitzer’s estimate of the size of qp is much more
inappropriate and inaccurate, since the the proton Kn p, is so
much larger than even the electron Kn e, , and thus further away
from the perturbative values required for Spitzer’s analysis.

Nonetheless, the small value of Spitzer’s formula for the
proton heat flow has caused many to ignore the potential role of
the ion heat flux in the variation of the ion temperature profile
in the solar wind. Others have demonstrated that the proton
heat flow in a collisionless supersonic flow might be negligible,
starting with Maxwellian boundary conditions (Hollweg 1971;
Schulz & Eviatar 1972). Still others have looked at the role of
the speed dependence of binary collisions in controlling the
skewness (Livi & Marsch 1987), and others have ignored
Coulomb effects altogether considering other effects to
dominate the mean free path for protons, especially in the far
reaches of the Heliosphere (Williams 1995).

This paper experimentally looks at the possibility that the
proton heat flux implied by the well-documented Helios
temperature variation summarized in Figure 1 could determine
the size of the proton heat flux, assuming that divergence of the
proton heat flux (effect (iii)) is the only competition for the

adiabatic cooling of effect (i), while explicitly assuming that
there is no QD effect involved and that collisional exchange
effects (iv) for the protons are negligible. The likelihood that
nature behaves in this way in the inner Heliosphere is then
tested in the three distinct ways discussed below. While
comparing the present solutions q r( )p

TE with the empirical

profile reported by Helios, q r( )p
H , a strong systematic shortfall

was identified in the Helios determinations of q r( )p
H . This

systematic finding concerning the Helios heat flux implies that
those arguments constructed under Phases 2 or 3 that relied on
the insufficiency of the Helios-determined q· p

H (or ignored
its contribution) to reach their published conclusions concern-
ing heat addition are no longer valid.

3. MODEL FOR THE SOLAR WIND
VARIATION OF T r U( , )p

To illustrate the possible effects of proton heat flux, in this
section, we develop a model for the ion heat conduction and
illustrate its use in the ion energy equation. The model for the
ion heat flux takes the form

q bnMw ˆ , (1)p p
3= 

where  , n, M, and wp are the skewness, the proton mass, the
density, and their rms thermal speed, respectively. This form
represents an energy density of the order of the ion pressure
making progress in the rest frame with a propagation speed of
the ion thermal speed as amplified by the skewness.
Some might refer to Equation (1) as the saturated heat flux

form, however, the situation is actually the reverse: the
saturated form starts from a dimensional argument like
Equation (1) and then attempts to suggest the size of  based
on various surmises and, in some cases, calculations concern-
ing instabilities in the presence of certain model forms for the
distribution functions. Any proton heat flux can be written in
this form with  being a dimensionless number that is to be
determined. By adopting this form, there is no presumption of
which stochastic effect(s) control the size of qp. It is clear that
 0 is the condition that attends thermodynamic adiabaticity.

Geometrically  reflects the average skewness of the velocity
distribution in the proper frame where there is no mass flux.
When the heat flow approaches zero, the skewness, or pear-
shaped nature, of w v Uf ( )= - goes to zero.
Inserting the general moment form for the heat flux into that

of Equation (1), we obtain

( )v U b v Uq M Mnw
1

2
ˆ · , (2)p p p

2 3= - - º 

which leaves our dimensionless skew,  , given by

( )
v

v U b v Uw

n
f

w

d v

w2
( )

ˆ ·
. (3)

p p p

p p

3 2

3

3
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Equation (3) shows that the motivation for the form of
Equation (1) is to measure parts of the integrand in
dimensionless thermal speed units, that is, v U wph = -∣ ∣ .
If the speed range of support for wf ( ) is of order wp, as in a
Gaussian of half width wp, the skewness can be expected to be

3

The Astrophysical Journal, 809:126 (12pp), 2015 August 20 Scudder



small, since the integrand is then the product of several factors
that are all small relative to unity.

In textbook kinetic regimes,  is small because it is
proportional to the small expansion parameter of these theories,
which invariably expand f v( ) about local Gaussians. For future
consideration, it is well to notice that in such regimes where
Spitzer formulations for qj are valid, it may be rewritten in the
form of Equation (1):

q
n k T

M
T O K Mnw3.9 (1) , (4)p

B p
p n p

3
t

=  =

where t is the collision time, K Ln mfplº is the Knudsen
number for the collisions that isotropize the distribution, and

wmfp pl t= . Equations (1) and (4) suggest the close association
between skewness and Knudsen number that can explicitly be
checked in the Spitzer–Braginskii limit:

K . (5)nµ

This insight is more general than the Spitzer–Braginskii
formulae, suggesting that the controlling aspects of skewness
are the controllers of the Knudsen number. Even the
“collisionless” solar wind has some binary collisions that limit
its Knudsen number until other, more effective scattering
agents are identified. Whatever sets the realized free path for
momentum transport will shape the skewness, and hence the
heat flux. Because the proton Coulomb Knudsen number can
be large, there is every reason to expect that the skewness can
be much larger than those regimes of textbooks that insist (for
their mathematics) on K 1n  .

Rather than solve the kinetic equation to predict  , we adopt
Equation (1) ensuring that its units are correct and the product
of two terms: one that summarizes collisionality via the
skewness, and the other that approximates the energy flux
density available to carry the heat. In this sense, this modeling
does not have a specific transport agent in mind, just that it is
very hard to stop such an energy flow, other than when the
scattering physics effectively makes the mean free path very
short compared to the scale lengths of the fluid. It is also
possible that a mixture of scattering processes, including
waves, set the size of  . However, a baseline maximum of Kn
is provided by Coulomb collisions (that never disappear) with
possible effects from waves superposed, not necessarily as
suppliers of heat but as scattering agents moderating the heat
flow that would otherwise occur with particles following only
Coulomb interdicted collisionless trajectories as discussed by
Livi & Marsch (1987). The empirical approach of this paper up
to this point, using Equation (1) and the Helios profiles, does
not commit to a specific process. We show below that when 
is inferred from the 5 year averaged Helios data, it is an orderly
function of bulk speed (see Figure 4)

After we demonstrate that the proton heat flow might be
attractive to explain the reported radial variations in Section 4,
we discuss in Section 5 the theoretical and measured
indications that qp is too small to be of consequence.

4. SOLUTIONS

We model the wind in the Helios radial range as having a
constant speed Uo. By ignoring coupling to electrons and
external ion energy sources in the asymptotic uniform flow

regime, the ion internal energy equation takes the form

q
dT

dr

T

r nk U

4

3

2

3
· , (6)

p p

B o
p= - - 

where kB is Boltzmann’s constant and Uo is the assumed
asymptotic wind speed. After using Equation (1) for qp and

treating  as constant (that possibly depends on Uo), and the
magnetic field in the radial direction, Equation (3) has the
solution

T r

T

T r

T

r

r
ln

( )

( )
2 exp

1

2
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1

4

3
ln , (7)
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where

, (8)b º




and where U

w
o

o
= is the ion thermal mach number at

r w w r, where ( )o o p oº . We consider below the range of
thermal mach numbers 4 ⩽ ⩽ 10. Since and  are both
assumed constant along a Uo stream line, the only factor that
controls the solution of Equation (6) is b . From Equation (6), it
is clear that  0 yields the collisional fluid’s adiabatic r 4 3-

profile, while the heat flow implied by a finite positive 
produces shallower radial decreases. In the exponential’s small
argument regime, we obtain the near power-law form that most
proton modelers have used to fit the Helios observations:

T r T
r

r
( ) ( ) . (9)p o

o
4

3 3
b~

æ
è
çç

ö
ø
÷÷÷

b+

The radial profiles for the full nonlinear solutions of
Equations (6) and (7) are shown in Figure 2 in a log–log
format that emphasizes the near power-law behavior of this
solution over the relatively narrow radial range surveyed by
Helios; separate curves have been determined for  in the
range 0 4.0 assuming 10< < =  . As expected, the
profiles with very small  tend toward adiabatic behavior,

Figure 2. Numerical solutions of solutions to Equation (7) for a range of 
values for a fixed assumed thermal mach number R10 at 60=  . Numerical
solutions closely follow the small argument power law behavior of
Equation (6). Digests of power law behavior for all and  variations are
displayed as separate symbols in Figure 3 below.
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while profiles with larger values of  have increasingly flatter
profiles with radius.

The diamonds in Figure 3 reflect the power-law slope for
individual solutions to Equation (7) versus assumed values of
 ; seven choices of  [4, 5, K9, 10] at r R60o =  generate
seven families of curves. The colored horizontal lines reflect the
best-fit power laws (by speed range) determined from the fits to
1975–1980 Helios data (Lopez & Freeman 1986, 1987). Each
horizontal line is labeled with the center solar wind speed used
for the fit; fit power-law uncertainties are indicated with flags of
the same color as the horizontal line for their best-fit value.

The phenomenological heat flux of Equation (1) can
reproduce the experimental Helios power laws at different
wind speeds provided a necessary dependence of U( )o is
chosen; its variation (averaged over the Mach number at fixed
speed state) is shown with red diamonds in Figure 4. The
horizontal error flags reflect the speed ranges of the fits done by
Helios. The vertical error flags reflect the impact on the
skewness estimates caused by supposing different proton mach
numbers at R60 , together with the uncertainty of the best-fit
Helios exponents. As expected, the slow wind is almost
adiabatic (with (250)  0), while the higher wind states are
suggested to have increasingly skewed distributions. It is
important to remember that  is an empirical parameter
determined from assuming Equation (1) and solving the energy
equation so that the predicted profile of T r( )p

TE agrees with the
logarithmic derivatives of Figure 1 inferred from Helios data.
Other than assuming  to be constant along the stream lines of
constant bulk speed, no other assumption has been made about
the scattering agents that determine its size.

4.1. Does Empirical  Make Sense?

As a baseline for interpreting Figure 3, we consider the
scaling of  if Coulomb processes were controlling the
Knudsen number. The temperature and density control mfpl
and the scale length L is proportion to the radius. It is well
known that the proton temperature and bulk velocity are
strongly correlated as Tp

1 2µU (Burlaga & Ogilvie 1970), while
in the asymptotic wind nr C2 = so that for Coulomb

scattering we can estimate

K
L

T

nr
rU . (10)n p

mfp p
o,

2
4

l
= µ µ

SinceUo varies by more than a factor of three across the Helios
data set, it, rather than r, controls the variation of Kn p, across
the Helios orbit by a ratio of 27:1. If only Coulomb effects were
present across all speed states, then these arguments would
suggest that a strong Uo

4 dependence should be recovered from
the theoretical modeling discussed above.
Motivated by our discussion of Kn , in Figure 4 we have

over plotted the Coulomb form from Equation (10) via the
relation U U( *)4µ over our direct determinations of U( )o
(red diamonds), which were obtained from the energy equation
and Helios data without committing to the actual scattering
agent. The lowest four speed states of the six examined fit this
relation nearly perfectly (with U*  350 km s−1), compatible
with the progression toward adiabatic behavior as Uo 
250 km s−1. In the two highest speed states that have been
summarized, a reduction from the Coulomb allowed skewness,
or at least a leveling off, is required to explain the radial
gradients. This might be a regime where the waves that are
present play a role in throttling the otherwise large skew by the
scattering they might cause. Note that such scattering need not
be interchangeable with suggesting the waves as an energy
source. A possible caveat must be considered since Lopez &
Freeman explicitly make note of strong oversampling in the
data between 300–600 km s−1; one thing that can occur if many
of the samples in these radial buckets are from a few of the 34
Helios I and II traverses is that the reported radial power law
fits (cf. Figure 1) may not be as free of compressional PdV
effects or other transient phenoma as in the more oversampled
regions (cf Figure 1 in Freeman 1988). These possibilities do
not detract from the strong and nearly perfect support of the
heat flux hypothesis for Coulomb moderated skewness shown
by theUo < 600 km s−1 regime, which is the most oversampled

Figure 3. Diamonds represent inverse radial power law exponents for the
theoretical solution to Equation (7) with phenomenological heat fluxes, for
different combinations of assumptions of and . Diamonds in smooth arcs
are results of different  for fixed, assumed . A modest range of  can
explain the range of reported proton radial exponents, in the presence of proton
heat flow modeled as in Equation (1).

Figure 4. Diamonds: inferred dependence U( ) vs. solar wind speed state
required to reproduce the Helios 5 years average radial variations (Lopez &
Freeman 1986) within their errors (Lopez & Freeman 1987). Diamonds reflect
average values of  considering a range of possible proton mach numbers
assumed at R60  ranging from 4 ⩽ ⩽ 10 and the reported statistical
uncertainty of the power law exponents. Blue curve shows the independently
estimated scaling of U( )o implied by the Coulomb scattering T nmfp

2l µ
and conserved mass flux dependences: Umfp o

4l µ .
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and, arguably, the Helios data most free from compressive and
transient phenomena that our spherically symmetric time
stationary modeling would not accommodate.

4.2. Do Theory and Observations of q r( )p Agree?

If the observed temperature profile has U( )o
d T

dr

ln pg º - , then
the proton heat flux implied by Equation (1) should have a
radial variation

q U r U nT U r( , ) ( ) ( ) , (11)p p
3 2 (3.2:4)µ µ - 

where the shallowest gradient goes with the higher speed wind
and −4 goes with the adiabatic slow wind. Note that the size of
the heat flow depends both on the product of the speed
dependent skew and the radial variation of the ion thermal
speed. In the adiabatic regime, the vanishing of the heat
flux comes from the extreme reduction of skewness caused by
Kn  0.

As will become clear below, we are interested in separately
comparing the amplitudes Q U( )o and exponent qg when
representing q r( )p as

( ) ( )q U r Q U
r

r
, . (12)

( )
p o o

o
Uq o

=
æ
è
çç

ö
ø
÷÷÷

g

We will show that the logarithmic derivatives of qp, i.e., qg s,
are nearly the same between Helios reported values and the
theoretical curves determined from the energy equation fits
above. At the same time, we will document that the Helios
determinations of Q U( )o s are significantly smaller than those
from the model explored in this paper.

4.3. Logarithmic Derivatives

We fit the reported Helios binned variation of the proton heat
flux with results shown in Figure 5(a) and (b). These power-
law fits have been performed using the generalized least-
squares approach for errors in ordinate and abscissa discussed
by Press(1992). The log–log fit addresses the bucket widths in
radius for the Helios presentation; as no errors are presented for
the proton heat fluxes or their standard deviations (as they are
bucket averages), we have assumed that the fractional errors for
the heat flux are at least as large as those acknowledged for the
temperature (Marsch et al. 1983). Actually, the heat flux

determination as a cancellation is probably not as accurate as
the even moments associated with the pressure. The tempera-
ture fractional error was reported to be 30%, and for these fits
we assume 50% uncertainty for the reported proton heat flux.
Below, we discuss the fact that the Helios proton heat fluxes

are systematically low by factors of 4–12 with typical values of
7.8. This rescaling does not affect the best-fit power-law index.
At this adjusted level, the determination is assumed to be 50%
accurate. The entire fit space is mapped and the minimum of 2cn
is determined. The 68% errors for the intercept and slope errors
were determined by the extremities of the level surface of

2.32c =n . The steep slope of the fractionally uncertain heat
flow’s variation with r, coupled with the half decade of
variation in log r and the uncertainty of the abscissa, conspire
to give the best-fit power-law exponents a rather wide range of
equivalent possibilities.
For the present, we focus on Figure 5(a), which compares

the best-fit power-law indices from Helios data and those that
are required by our model in Equation (1). The fit slopes (i.e.,
exponents) are consistent with equality, with the best
agreement occurring in the higher speed states where the
modeled skew was higher.
Figure 5(b) shows two traces for the amplitude Qo from

fitting the Helios data versus the amplitudes Qo which Equation
(1) implied from the heat flow that reproduces the observed
radial gradient of the proton temperature. The dotted lines
connecting the black diamonds are our best-fit amplitudes from
fitting the unmodified Helios heat flux integrals summarized in
the literature (Marsch et al. 1983). These amplitudes are much
lower than those expected for Equation (1) to explain the
temperature gradients.
As we discuss in Section 5, there is a very strong systematic

tendency for the Helios heat flux to be smaller than what is
actually present in the medium. The shortfall is estimated to be
of the order of 780%; that is, the true ambient heat flux is of the
order of 7.8 times the inventoried value as a result of this
systematic effect. The blue diamonds with orange error flags in
the abscissa and ordinate in Figure 5(b) reflect the suggested
revised values for the Helios information, provided the study
presented next is truly representative of all of the situations
surveyed by the presented Helios data. While the most probable
value is 7.8, this factor ranges from 4–12. With these
considerations, the Qo amplitudes from the corrected Helios
data and the implications of Equation (1) would be consistent.

5. MEASURING THE ION HEAT FLUX

The original Helios analysis considered the role of the ion
heat flux, q r( )p

H , as determined by numerical integration of the
proton-extracted distributions and concluded that it was
inadequate to explain the observed profiles of the ion
temperature (Marsch et al. 1983). According to their presented
best-fit curves with unknown treatment of errors or ambiguities
in ln r, the heat flux was within a factor of 3–5 of being
adequate to explain the temperature variations and an order of
magnitude deficient in low-speed winds. As we have just
shown in Figure 5, the errors on the best-fit ordinates and
abscissae are substantial and high-quality fits require that we
inform the optimization process of the errors known to be in the
data; these uncertainties were apparently not used in character-
izing the Helios assessment of the importance of the heat flux.
Nonetheless, as we have shown in Figure 5, more appropriate
estimates of the heat flow provide amplitudes (black diamonds

Figure 5. Comparison of radial power law exponents (a) and amplitudes (b)
for the Helios heat flux profiles and those found to be needed via Equation (1)
to explain the long term Helios radial power law behaviors of proton
temperature.
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connected by dotted line) that are substantially below that
needed to explain the temperature variation proposed in this
paper. However, these fits did show that the radial variation
needed for the present approach were consistent with the radial
trends of the data Figure 5(a). We now look carefully at the
Helios approach for determining the proton heat flux from their
E Z measurement by numerical integration.

5.1. E Z Measurements for Ions: Systematics
that Impact Proton Heat Flux

Most 3D proton plasma detectors, like the Helios sensors,
are variants of detectors that filter charged particles by their
energy per unit charge, E Z , and direction of arrival, rather
than filtering the flux based on their mass or the charge state of
the particles, such as is done with time of flight mass
spectrometry. In the solar wind, the dominant ions are protons
and α particles with four times the proton mass and carrying
two charges.

When the protons are measured in the solar wind within a
narrow range of energy per unit charge E Z k∣ of an electrostatic
analyzer, there is an intrinsic degeneracy whereby different ions
with different charges and potentially different masses can be
collected in the same telemetry window of E Z( ) kD ∣ , provided
that the ions arrive from the selected common bundle of
directions in velocity space within the field of view set by
entrance apertures and deflectors. If the energy per charge is the
same for two different charge states, then the accepted
velocities of the two species that are found in the same E Z
bucket have the algebraic vector relationship given by

( )U w U w
M Z

M Z
, (13)j jp p

j p

p j
+ = +

where U wandk k are the bulk velocity and random velocity
vectors of the k-th species. Since the bulk motions of different
species can only drift differentially along b̂, this condition may
be restated as

( )U w U
M Z

M Z
w , (14)p p

j p

p j
p j p j,D+ = + +

where U U b̂jjp p jpzD = - = is the field aligned slippage
between commonly observed species.

Focusing on contamination from α particles, this condition
becomes

( )U w U w2 (15)p p p pD+ = + +a a

or, assuming the proton bulk velocity is in the radial direction,

( )w r wU2 1 ˆ 2 2 . (16)p p p,D= - + +a a

If w bw ˆ
p ot= , then the matching conditions become

( )w U w2 1 cos 2 2 (17)o p p, ,t c z= - + +a a 

and

( )U b w b2 1 ˆ 2 ˆ , (18)p- ´ = ´a

where r bcos ˆ · ˆc = and α particle gyrotropy has been
assumed.

Assuming the proton and α thermal speeds are equal to w r( )o
and isotropic, we can write these conditions in terms of

dimensionless thermal speed variables,
w

w

j

o
n = , of the alphas

and protons, that is,

r r0.2928 ( )sin ( ) (19),n ca ^  

and

r r
r
n

n

0.707 0.2928 ( )cos ( )
( )

1 4
,

(20)

p

p

,n t c
b

- -
+

a a
 

where gyrotropy has been assumed and the slippage between
species is assumed to be at the local Alfvén speed,
V B m n n n k T B(4 ( 4 )) and 8A p p p p B p

2 2 2p b p= + ºa .
The act of observation of solar wind ions through an E Z

lens induces ambiguity in the information about the plasma
obtained with an E Z sensor. The basic telemetered informa-
tion of particle counts CS arriving from a given direction ,v vq f
and collected in a narrow window about E Z k∣ is an
irreducible, entropy producing sum:

C C C , (21)p j j= + SS

where the summation over all counts from species other than
protons are from those different phase space locales, the mass
and charge states, that satisfy Equation (13).
Two different approaches to this problem have been

employed: (a) the forward modeling approach, which assumes
vf ( )j for all of the modeled species and then predicts the

counts that should be collected as a function of the free
parameters of such a model; and (b) the other approach seeks
to determine the moments of vf ( ) from a “reasonable
approach” that first separates the telemetered counts and
assigns them to different species. From the perspective of this
paper, both approaches have liabilities; the first produces
answers that are optimizations for the fit space assumed, while
the second approach determines the answers by numerical
integration, provided the count rate matrix is partitioned
appropriately. As we have argued above, the process of
passing through the E/Z detector is the source of some essential
ambiguities in the count rate matrix. Neither method affects a
“lossless” reversal of this entropy caused by this form of data
collection.

5.2. Proton α Particle Specifics

In this brief section, we focus on the two most common
charge states, protons and α particles, He++, which tend to
have the least overlap in E Z . Figure 6 illustrates the nature of
the measurements for an E Z detector. The typical situation in
the solar wind is that the α particles are observed to slip along
the magnetic field and lead the protons as they leave the Sun. In
addition, the α particles and protons are commonly observed to
have comparable thermal speeds w wp a leading to tempera-
tures proportional to their mass. Typically, the α particles
represent 4% by number, with a range of 2%–10%.
As conceptually shown in insets A and B of Figure 6, the

protons and α particles occupy their own velocity space.
However, the nature of the E Z sensor is that parts of the α
phase space and those of the protons overlap in energy per unit
charge, which is the basic “tuning” parameter that the
electrostatic analyzer differentiates according to Equations
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(14) and (16). As shown in inset (C) of this figure, the
telemetered count rate matrix is an unknown mix of phase
space contributions in each pixel of E Zá ñ and direction of
arrival. “Operations” must be undertaken on the composite CS
matrix to differentiate the likely contributors that went into
each element of the matrix. Thus, as an inverse problem, one
has the numerical matrix of inset (C) and would like to extract
the respective numerical matrices for the constituent masses
and charges corresponding to insets (A) and (B). Like most
inverse problems, the answer is not unique but procedures have
been described to operationally unpack the third inset into
candidate input matrices. As one can see from this figure where
the protons are modeled as possessing a heat flux shown by the
skewness in their counting rates, this feature of the protons is
found “under” the αs and may become lost in the inverse
problem under discussion.

The supersonic nature of the wind (relative to ion thermal

speeds) implies that the speed v* of the peak counting rate for
each supersonic species is nearly at its bulk speed

(v U* (1 4 )2= + - ), or at its implied energy per unit charge
speed in the lower panel. The α peak and proton peak will be
separated by U( 2 1) p- , as seen in the lower inset of this
figure. However, the ion velocity distribution functions are not

Dirac delta functions, but have probability distributions that
cause counts from both species to be found in the “saddle
point” region between the two bulk velocity peaks. The number
of particles in the vicinity of these thermal spreads determine
the anisotropy and heat fluxes of the respective species. As also
shown in inset (C), the thermal spreads of the αs and protons
overlap, and there are many pixels where the “entropy” caused
by the sum created by the detector must be “undone” by data
processing on the ground. Some have approached this problem
by fitting assumed model forms (such as a superposition of
convecting, anisotropic Gaussians) to the underlying distribu-
tion functions (Feldman et al. 1973). These techniques must
secure their model’s parameters for f v( )p under the α particles
as constrained by observations elsewhere, and rely heavily on
the appropriateness of the model chosen for that occurring in
nature. The Helios team avoided fitting functions altogether,
wishing to determine the moments of the constituents by
numerical integration after first assigning a partition of the
count rate matrix. Aside from semantics, it should be clear that
such an assignment involves the same kind of judgement,
(different) ambiguities, and lack of uniqueness for the
information determined in this way as found by those using
explicit modeling in the forward modeling approach.

5.3. Estimating Typical Values for “Crease” Speed

Operationally, there is usually a “crease” in the composite
count rate spectrum (indicated in red in Figure 6(C)) that
passes through the saddle point in the count rates, which gives
some idea of the cross over location of dominance between
species’ count contributions. This crease must be located (in
three-dimensions) and a first approach (Marsch et al. 1982)
assumes that the makeup of CS is all protons on the low E Z
side of the crease and all α particles on the other side, closer to
the second peak. (This general approach was checked by
comparing this separation with an electrometer that measured
the current, rather than the counts, and showing that this ratio
was close to two for that part of the counts identified as
predominantly α particles. It should be noted that this
measurement was designed to differentiate 2 from 1, but not
1.85 from 2, for example. Thus, the extensions of the proton
phase space under the alphas, even with these checks, could
still have occurred.) It should be carefully noted that this
procedure is equivalent to making the vf ( ) for the two species
zero on the corresponding “other” side of this dividing
“crease.” This will have important implications below. Both
fitting and moments have difficulties with the recovery of vf ( )
in the vicinity of the “crease,” especially when determining
how the probability for the protons behaves “under” the
dominant region of the other species. Conversely, the parallel
temperature of the α particles is also potentially affected by the
unpacking of the count rate matrix.
Ordinarily in the moment approach, an examination of the

partial sums contributing to the integrals can be used to confirm
the operational convergence of the moment in question; the
effective truncation of the moments above v“crease” severely
interferes with this internal consistency check for convergence,
since the truncation de facto makes the integral convergent to
its value obtained when the upper limit exceeds wph . Fitting
procedures to narrow peaks are well disposed toward obtaining
the supersonic flow velocity and the density, but even the trace
of the pressure or the pressure anisotropy can be influenced by
the adopted operational approach to handling the “crease” area.

Figure 6. Insets (A) and (B) display count rate matrices for separate proton
and alpha particle phase spaces. Bottom inset illustrates how these two
conceptually separate phase spaces are “mixed” by an E Z detector, creating a
count rate matrix (C) that is placed in telemetry and must be separated into its
separate constituents before clear moments can be determined from either
species. Carrying a heat flux, the proton distribution in (A) is skewed. This
asymmetry along the magnetic field is preferentially submerged in the saddle
point region under the α particle counts where the two separate count rates
overlap (inset (C)). This saddle point is about 2.5 proton thermal speeds above
the proton bulk velocity peak. The “crease” mentioned in the text is the path of
steepest descent down from the saddle point, shown here in red. In the Helios
data processing, counts below the “crease” are labeled protons and those above
the “crease” are alphas, which effectively drops the proton velocity distribution
to zero above the crease along b̂. Examples of the effect of this procedure are
shown in Figure 8 below.
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The heat flux is an extreme example of this type of problem
already alluded to by Marsch et al. (1982).

We have used the relations in Equations (17) and (18) to
determine the variation of the count rates into an E Z detector
as a function of the increasing proton speed along the magnetic
field. At present, we are interested in where the crease intersects
the upper limit of w for the protons and the overlap of α

particles starts to corrupt the clear observations of this part
of the protons velocity space. Moving along the ray
v U bw ˆ

o
2 1 2h= + á ñ , we can find where zero pitch angle

particles cross the “crease”; its displacement from the proton
bulk velocity scaled by the proton rms thermal speed yields the
dimensionless offset, h, of the “crease” from the proton bulk
velocity, that is,

w

w
. (22)

o
h =

D

This number is of interest since it informs what is the upper,
proper frame limit of integration that would have been used in
the heat flux integration that we seek to use in Equation (25)
below.

As may be seen from Equations (17) and (18), h depends on
a rather large number of background parameters: the α-proton
concentration ratio, the flow speed, the mach number, the
proton beta, and the angle that the magnetic field makes to the
radial. We have surveyed nearly half a billion combinations of
these parameters for bulk speeds in the range 250 U⩽ ⩽
850 km s−1, proton beta in the range 0.1 pb< < 1, proton
thermal mach number in the range 4 ⩽ ⩽ 11, the angle

bbetween ˆc and the radial in the range 0 45c ⩽ ⩽ , and
variations of the α concentration from 2% to 10% to determine
the likely distribution of the h “crease” locations in proton rms
thermal speed units. This range of parameters includes those
that would be presented to the Helios spacecraft between
perihelion and aphelion.

This crease estimate study assumes Gaussians for the ions,
and its size could be influenced by yet another quantity—how
large is the proton heat flux and in what manner do the protons
support this skewness. Since there is at present no clear model
for the proton phase space distribution when carrying a given
amount of heat, one can generally say that the “crease” speed
will increase slightly above our estimate depending on how the
heat flow signatures occur in the proton velocity distribution
and how much α particle field aligned anisotropy is present in
the data.
Figure 7(a) summarizes over a half a billion combinations of

parameters that could influence h as a function of the α
concentration (which scales the relative heights of the two
peaks in Figure 6), and the plotted standard deviations reflect
the variability of the crease speed that can be expected. The α
concentration produces an orderly, but slight trend for the mean
value h indicated by the black diamonds in this figure. The
dispersion about this curve is nearly constant, but the range of

abouth h is slightly skewed toward higher values. The red
curves indicate the absolute observed extremes in this survey
for the crease speed. Nonetheless, this extensive survey shows
that typical values for the crease speed are extremely unlikely
outside of 2.1 3.22h< <  0.23. To routinely obtain
convergent heat fluxes by numerical integration, we show in
Section 5.4 that uncompromised distribution function coverage
until at least h > 5.5 would appear to be mandatory. When

creaseh < 5.5, the contributions to the integral on [ , 5.5]creasen
are (i) substantial and (ii) uninventoried in the Helios “model
independent” determination of the heat flux moment with limits
set by the crease determination.

5.4. Impact of n on Heat Flux Determination
by Numerical Integration

We now wish to illustrate the nature of this systematic loss
of information and what impact it has on model independent
numerical integration for the proton heat flux. A well-known

Figure 7. (a) Distribution of h , the average dimensional distance (in thermal speed units) from the peak of the proton velocity to the “crease” along b̂ in the E Z count
rate distribution as a function of alpha concentration n

n p

a . Symbols reflect the average and flags the standard deviations at fixed alpha concentrations over a wide range

of external parameters that control the overlap and ensuing entropy in the count rate matrix as discussed in the text. This figure summarize one half billion
combinations of parameters that cover their expected ranges and combinations over the Helios orbit. Blue traces are the boundary including 90% of all outcomes; red
curves are the most extreme values (high and low) in the sample. (b) Distribution of h , the average dimensional distance (in thermal speed units along b̂) from the
peak of the proton velocity to the “crease” in the E Z count rate distribution as a function of proton thermal mach number. Flags reflect the standard deviation about
the means shown.
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property of the moments is that their integrands are system-
atically dominated by contributions that migrate to larger and
larger random speeds about the bulk speed as the moment
number increases. For our present purposes, we will discuss the
density, momentum, pressure, and heat flux as having moment
numbers of 0–3. Thus, the heat flux integral ordinarily derives
its principal contributions further from the origin of velocity
space than the temperature, the momentum, or the density. The
precise location of these maxima depends on the details of the
distribution function. If Spitzer–Braginskii transport is credible,
then the maxima for these moments can be worked out
analytically (see Scudder & Karimabadi 2013). The main
effect can be seen from the form of the moments: Mn =

w wf f w P dwd( ( ) ( )) (cos( ))n
n w w

2ò d q+ W+∣ ∣ , where w v U= -
is the velocity space coordinate in a frame at rest with the
species bulk speed, where Pn are the Legendre polynomials of
the order of n, and df are the transport induced corrections to
the distribution function in the presence of spatial non-
uniformity and microscopic forces. Thus, the integrands leave
the origin with wf ( ) multiplied by wn 2+ , which increasingly
detunes the value of the integrand to the features of the
probability distribution near the origin (because it is flatter
and flatter with increasing n). Eventually, the growth of
this polynomial in w will compete with the decrease in

w wf f w( ) ( ) asd+ ∣ ∣ ∣ ∣ . For a given distribution function, the
location of the maximum contribution may be computed. For
the same distribution function, the location of the maxima
moves to higher speeds as n increases. For the odd heat flux
there are two minimaxes, occurring at different and oppositely
signed w.

To illustrate a consequence of the “crease” partition of
C v U wat oh= +S   , we have modeled (Figure 6(A)) a simple
proton distribution in Figure 6 that contains a core–halo model
for heat flow (with indicated skewness; Feldman et al. 1973).
The purpose is not to endorse such a model, but to have a
concrete distribution with a known heat flux; with such a
concrete example, the impact of the “crease” upper limit for the
heat flux can be quantified. As with all skewed distributions,
this model form predicts counts more asymmetrically spread in
velocity space than does a Gaussian with no skewness. (The
counting rate peaks of Figure 6 do not precisely retain the
symmetries of their parent probability distribution functions

vf ( ), since the counting rates are integrals over speed with
weights of v4, which bias the high speed side counts from a
symmetric Gaussian vf ( ) to be slightly asymmetrical.) For
supersonic distributions, this effect, while present, is small (see
Figure 6(B)) and should contrast with the markedly skewed
“skirt” on the modeled proton distribution in Figure 6. When
merged in an E Z detector (inset (C)), this skew signature is
partially obscured “under” the location of the α distribution
with non-zero width.

The proton heat flux in magnetic field aligned coordinates,
takes the form of

q Q w dw( ) , (23)p ò=
-¥

¥
 

where

( ) ( )Q w f w w mw w w w dw( ) 2 ,
1

2
.

(24)

0

2 2 2òpº +
¥

^ ^ ^ ^   

We then examine the fractional value of the proton heat flux’s
convergence in the form

( )f w
Q w dw

q
*

( )
. (25)

*

p o

w

p

o

ò
h =

h

-¥
 

We note that the negative parallel half of the random proton
velocity space is unencumbered by other counts from different
composition, so that starting the integral for fp at large negative
values of w should initially obtain the correct partial integrated
values, Q w( 0)< .
The crucial question then becomes what value does f w( )p oh

take on compared to unity? If this number is small, then the
Helios heat flux would seriously have underestimated the true
heat flux by a factor of the order of f w( )p o

1 h- .
The results of this exercise are indicated in Figure 8. For

values of 0h < , the partial integral is negative since the
integrand of Q w( ) contains the odd polynomial aw b w 3+ ∣ ∣ .
As the upper limit of integration goes through 0h = , the value
of the integrand becomes increasingly positive, adding to the
total, and the fraction fp starts reducing its negative size by
getting successive positive increments. As the sign changing
curve for f w( * )p oh indicates, the integral has converged to a
positive outward heat flux provided 6h > . However, the
statistical location for h is rather compact, as shown by its
probability distribution P ( )h rising off the bottom horizontal
axis. By interpolating these results against the master curve for
f w( * )p ph , we can determine the probability distribution
P f( ( ))p h in the histogram anchored in the right vertical axis.
The fractional convergence factor for the heat flux integral, fp,
is the independent variable of this second probability function.
Its shape indicates that the most probable value of f 0.1p ~ and
has a half width of approximately 0.04. While this probability
is skewed toward higher values of the fraction (the most

Figure 8. Variation of the fraction f w( * )p ph of the actual heat flux obtained by

integration between v[ , ]*-¥  for a core halo skewed proton distribution. For
alpha concentrations of 4% the statistical zone of the “crease” at woh found in
Figures 7(a), (b) is indicated by the lower probability histogram, P ( )h . This
statistically defined regime of h determines a probability distribution of the
fraction of the true heat flux, P f( ( ))p n , that implies an average short fall of
S 780%á ñ = . This suggests that if this modeled velocity distribution were
realistic that the Helios heat flux reported by numerical integration would be
too small by an average factor of S 7.8á ñ = . This systematic effect is in the
summarized proton heat flux moment of the Helios data set.
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extreme fraction (with probability 1 107) is as high as 0.6), the
dominant occupancy of this histogram is certainly below 0.2.
This indicates that this effect might suggest shortfalls instead,
ranging between [1 /. 2, 1 /. 06] [5, 16.6]= , with the most
likely shortfall being of the order of 10 fold. The actual
weighted average of f 7.8p

1á ñ =- was used in constructing the
blue diamonds in Figure 5(B), which nicely overlap (with their
errors) with the amplitudes suggested from Equation (1) which
reproduced the proton temperature radial power laws of the
Helios data.

Since the α particles always lead the protons along b̂ and
because the mapping of E Z tends to place the α peak at speeds

U2 p, the nature of the α particle entropy systematically
occurs on the high proton thermal speed side of the proton bulk
speed peak of the distribution. Accordingly, the E/Z systema-
tics (with truncations at v wpcrease h= ) will systematically tend
to underestimate the proton heat flux.

There are many variables involved in determining the size of
this underestimate; among the prominent factors will be the
actual size of the proton and α particle thermal speeds, the
actual α concentration, the actual slippage of the alphas along
the magnetic field, and the concentration of the alphas relative
to the protons. All of these factors impact the precise
determination of the “crease.” In constructing P ( )creaseh we
have surveyed all of these effects except w wp ¹ a. The precise
location also depends on how the proton distribution is skewed
in velocity space.

It appears that short of a 3D mass-differentiated distribution
function, the true size of the proton heat flux may not be yet
known in a model independent way, certainly not as function of
radius from the Helios data set.

6. DISCUSSION AND SUMMARY

The present paper has explored the possibility that the proton
heat flux and its implicit redistribution of internal energy can
explain the observed radial variations of the proton temperature
as a function of solar wind speed state. Using Equation (1), we
have determined the average skewness required to replicate the
long-term Helios proton radial variations reported previously;
this has been done without any predetermination of the
stochastic agents involved in regulating the transport. Indepen-
dently, we have also estimated the variation of  that would be
expected if it were principally determined only by the Coulomb
mean free path mfpl for scattering; its scaling with bulk speed in
the asymptotic wind is (i) strong and (ii) strikingly similar (see
Figure 4) to the empirical skewness determined by comparing
the radial temperature profiles produced by Equation (1) in the
energy equation, being especially precise below U 600o <
km s−1. The deduced variation of skewness, determined by the
observed gradients of Tp(r), recovers the expected strong bulk
speed dependence that would attend the skewness being set by
the Coulomb collisional mean free path that is over plotted in
Figure 4. Empirically there seems to be some upper limit set for
the skewness of the protons in the highest speed winds that
reverse this trend of growth of skewness with proton binary
mean free path. This might be a regime where wave particle
scattering begins to limit the mean free path of the protons
involved. Alternatively, this highest speed regime of the Helios
catalog is the least well sampled multiple times (see Figure 1,
Freeman 1988) and may have more transient compression
physics in its average profile. More needs to be done in this area
as well. We have recovered the adiabatic behavior of the lowest

speeds in the wind within this frame work by inferring a small
skewness in such a low-speed state that is consistent with our
overall scaling. By way of contrast, to date, the alternate view of
external heating for the wind protons has not reproduced the
Helios radial variations of the protons as a function of speed
state.
The proton internal energy budget for the wind is rather

small, being 2- of the ram energy; accordingly, a theory that
explains its variation must be fairly accurate and consider
carefully all possible contributions. Thermodynamic adiabati-
city does not just happen, it requires collisions to ensure that
heat conduction does not disrupt this postulated thermal
isolation. As shown in Figure 4, the collisionality that enforces
very small skewness in the ultra-slow wind produces very weak
q and induces adiabatic behavior in the presence of the flux
tube’s expansion. As shown by the same graph, this argument
cannot be sustained in the higher speed winds with the lower
densities and higher temperatures which both cause a rapidly
growing mean free path for Coulomb collisions that allows heat
to flow generally. Proton heat will flow because there are
insufficient collisions to impede it from flowing; postulating
adiabaticity requires a rationale that is generally not present in
the solar wind’s expansion.
When considering the “collisionless” solar wind, U 350⩾

km s−1, the proton heat flow will generally be present and
disruptive of thermodynamic adiabatic conditions. Arguments
for the necessity of QD in such flows that have postulated
adiabatic expansions are inconsistent. When modeling the
effectiveness of coronal heating, suitable heat flow models
must be included. As shown with the present calculation, q·
is a significant entropy source and is capable of removing the
need for QD addition. Early arguments that the observed Tp
disagreed with the adiabatic solar wind solution do not actually
imply that heating of the QD type is required; instead, they
imply that one of the four types of entropy addition discussed
in this paper is involved in changing the temperature profile.
Unless and until an argument is made that collisional physics
supports an insulating adiabatic description, the role of a
relevant heat flux must be inventoried which is valid for the
Knudsen number of the medium being discussed. A relevant
model must also predict the direction of the heat flux. The
accuracy of modeling heat flowing back toward the transition
region from coronal maximum clearly impacts the amount of
heat required to maintain the corona; however, retaining
Spitzer’s invalid heat description with its q Tk= -  predic-
tion in the low corona while studying the effectiveness of wave
damping is just such a disconnect. There are several papers
discussed above that do just that!
The radial variations for qp required by Equation (1) are not

inconsistent with the power laws for qp discussed by Helios
researchers Marsch et al. (1982). We have refit their presented
data assuming that the heat flows have 50% errors, treated the
bucketed errors in rln properly, and determined heat flux
radial exponents with errors that are compared with those
required from Equation (1) in our model in Figure 5.
As shown in Figure 8, the parallel velocity space integral for

q p, contains a strong negative contribution from below the
solar wind velocity before acquiring its final positive value, if
all of velocity space is “in view.” That figure shows with P ( )h
that this moment was routinely interdicted well before it
converged. This interdiction at w2 p+ occurs for nearly all of the
conditions surveyed for the Helios mission. Accordingly, the
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reported heat flux values from the Helios numerical integra-
tions have three properties: (i) though numerically incorrect,
they are aligned with b̂; (ii) though numerically incorrect, they
are proportional to the correct value (by the fixed dimension-
less cutoff), so that their radial variation d q d rln lnp

H should
nearly be correct, since this quantity is independent of the
proportionality constant; and (iii) the size of qp

H does leave
q· p

Helios too small in the ion entropy equation for its true
contribution.

Given that the α position in E/Z rather regularly clips the qp
integral at a comparable number of thermal speeds above the
proton peak, the radial variation of qp

H might be better than its
overall estimate of the size of the heat flux. We have shown
(Figure 5(a)) that the radial exponents of Helios and this paper
are compatible, and that, after correcting for an estimate of the
shortfall indicated by the α particle “entropy,” that the
magnitude of the heat flux required by Equation (1) appears
to be consistent with the observations (Figure 5(b)). These
findings have implications for the significant body of research
that has relied on the Helios heat flow determinations and their
radial variation to sustain their conclusions (Marsch et al. 1983
and Hellinger et al. 2011, 2013).

Other mass-resolved proton spectrometers have been flown
in the solar wind on ACE, Ulysses, and Stereo, but
determinations of the proton heat flux measurements have not
yet been discussed in the literature. With Solar Probe Plus there
will be a 3D mass-resolved spectrum (J. Halekas 2015, private
communication) for protons, at least at times, that can evaluate
the idea that the proton heat flux exceeds what can be
determined by generalized “crease” partitions of E/Z phase
space, which will also be available.

The unusual circumstance of asymptotic wind conditions and
many Helios passes through a fixed radial regime has allowed
the calculation of the proton heat flow necessary to explain the
observed temperature profiles—while simultaneously ignoring
compressive heating, wave damping, or exchange terms.
Arguments have been advanced in connection with Figure 4
of this paper that Coulomb mean free path effects are present in
the inner Heliosphere data as the nearly exclusive limiters of the
proton heat flux that flows for U 600⩽ km s−1. For even less
collisional, higher-speed winds, other agents (perhaps wave
scattering) could play a role in keeping the mean free path from
going as high as the proton mean free path would suggest,
although the quality of the radial profiles is not as good for these
speed ranges as those between 300 and 650 km s−1. These data
reenforce the important idea that by weakening collisions one
does not cause the heat flow to go to zero; rather, the reverse

occurs: the heat flow becomes more important with enhanced
skewness (Figure 4) as the system becomes more “collision-
less.” These data also seem to support the pro tempore approach
for estimating heat flows in large Knudsen number regimes by
using a form like Equation (1) that is self similar to, but retains
the same structural scaling Kn that can be verified in detail
with Spitzer–Braginskii transport in the form of Equation (10)
when Kn p, is suitably small.

We thank D. McComas, G. Gloeckler, and J. Halekas for
discussing the processing of protons from E/Z ion measure-
ments, the Solar Probe Plus project for invitations to make
presentations at their SSG, the University of Iowa for research
funding, and SED for editorial advice.
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