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Abstract

A Steady Electron Runaway Model (SERM) is formulated describing plasmas in the astrophysical “condition” having
finite (rather than infinitesimal) Knudsen number, Pe, suggesting an omnipresent leptokurtic, nonthermal, and heat-
conducting electron velocity distribution function (eVDF) as the replacement for the Maxwellian ansatz typically made.
The shape parameters of SERM’s eVDFs are functionals of the local dimensionless electric field, , shown to be nearly
interchangeable with the pressure Knudsen number,Pe. The eVDF is determined by the total density and pressure, heat
flux, andwith the Maxwellian as a special case when = 0 . The nonthermal part of the eVDF is caused by local and
global runaway physics and its density fraction is monotonically dependent on . SERM explains the distinguishable
conduction band of suprathermal electrons to be the result of the inhomogeneities of astroplasmas that require ¹ 0 to

enforce quasi-neutrality. SERM shows that the direction of the heat flow should be that of bE ˆ . Almost all reported space
age correlations among the shape parameters of the solar wind eVDF are reproduced by this modeling, including scaling
of: (i) nonthermal spectral break energy, and (ii) partition of suprathermal density and partial pressure, with solar wind
speed. SERM, together with eVDF observations, indirectly bracket < <0.2 1 au 0.65( ) , producing a steady-state
eVDF, consistent with in situ (i) heat flows, (ii) strahl pitch angle features in high-speed winds, (iii) =J 0 , and (iv) non-
negative probability at all velocities. Because finite Pe is the identified prerequisite for SERM modeling, nonthermal
eVDF’s are expected nearly everywhere in astrophysics where > 0.01Pe .

Unified Astronomy Thesaurus concepts: Non-Gaussianity (1116); Stellar coronal lines (308); Solar coronal heating
(1989); Solar coronal lines (2038); Solar wind (1534)

1. Local Thermodynamic Equilibrium (LTE): Choice or
Convenience?

Hidden in many inferences in astrophysics are assumptions
about the nature of the collisional regimes where the radiation field
was last influenced prior to detection (Dudík et al. 2017;
Dzifčáková et al. 2018). A common assumption involves the
population of states, which, in the absence of knowledge to the
contrary is assumed, for want of other choices, to be Maxwellian
with density and temperature as parameters. This type of inversion
is used to produce impressions of the temperature in plasmas far
removed from the observer. A rather general argument is presented
here that this mode of inverting photon information has a
systematic bias by presuming the Maxwellian eVDF of the LTE
when inferring the population of states involved in the line’s
formation. A suggested alternative is presented based on this
paper’s Steady Electron Runaway Model (SERM).

Modeling astrophysical plasmas often involves solving the
fluid-scale magnetohydrodynamical (MHD) equations. Within
the derivation of the MHD fluid equations from the kinetic
equations and their closure are further hidden assumptions of
LTE (Hazeltine & Walbroeck 2004) that are generally
unwarranted on the same large scales of the modeling. These
hidden assumptions also preempt consideration of non-LTE
types of physics from occurring in such models (Scudder 1992;
Meyer-Vernet et al. 1995). Barring improvements that do not
make these small Knudsen number LTE approximations, this
compromised modeling continues (Scudder 2019a).

To move beyond these (hidden) reliances on LTE requires the
formulation of an alternative that challenges the likelihood that
the Maxwellian eVDF is the most likely one to occur in the
regions under study. To be sure, considering this possibility
faces considerable resistance best redressed by studying plasmas
with in situ experimental access, such as the solar wind as
presented here. There finite Pe is clearly common, and this
paper argues that this parameter (or its dimensionless parallel
electric field cousin) is the central index of the importance of
non-Maxwellian eVDF’s that is explored in this paper.
The present calculation and its comparison with solar wind

measurements furthers the description of transport in plasmas
with finite Knudsen number, c , quantitatively defined by
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where b̂ is the local magnetic field-aligned unit vector. A fully
defined Knudsen number associated with χ depends on the mean
free path for scattering, lmfp, and the magnetic field-aligned scale,
L, of χ. The pressure profile usually has the steepest gradient,
determining the shortest transport scale L; it thus determines the
relevantPe for the mean free path over scale that enters as a small
perturbative parameter in Chapman–Enskog closures (Chapman
1916; Enskog 1917), which are also discussed in Chapman &
Cowling (1939), Rossi & Olbert (1970), Fitzpatrick (2004), and
Zank (2014). Spitzer and Braginskii use slightly different versions
of these expansions (Spitzer & Harm 1953; Braginskii 1965).
Between 0.3 and 5 au the observed solar wind plasma

electrons possess O 1Pe ( ) . At 1 au >d U dU1 au, 0Pe( )
(Scudder 2019b). In all speed states of the wind “ubiquitously
nonthermal” eVDF have been observed over the last 50 yr.
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Being nonthermal, the observed eVDF’s possess kurtosis,
which measures its departure from a local Maxwellian of the
same density and mean energy. This kurtosis is of a special
type: leptokurtic, meaning that the nonthermal signature is
exhibited by overpopulated high-energy wings on the VDF,
rather than under populated tails that form the platykurtic type.

The observed leptokurtic, subsonic eVDF’s also support
velocity space skewness predominantly at suprathermal
energies, determining a net heat flux moment that is generally
outwardly directed along b̂ in the undisturbed wind. The heat is
dominated by energy fluxes at suprathermal energies accom-
panied by weaker counterposed fluxes from the higher density,
but lower mean-energy thermal electrons. Routinely empirical
heat flows qP have been measured, while the same eVDF does
not draw electrical currents parallel to b;ˆ in this situation
J 0 , and the electron fluid as a whole is consistently
observed moving with no relative velocity to the solar wind
ions (Feldman et al. 1975), while supporting a coherent heat
flow, qP.

This empirical result demonstrates that predicting heat flow
in the plasma requires descriptions that predict the nonthermal
partial density fraction of the eVDF (first tracked in the fourth
or kurtosis moment). Systems, usually closed at the third
moment (Chapman–Enskog perturbative expansion about local
Maxwellians), have no chance of describing heat flow physics
that is experimentally observed inside of 5 au.

The observed ubiquitous non-thermals conduct heat and
cooperate with low-energy electrons to achieve a =J 0 , quasi-
neutral, hydrodynamic expansion of the solar wind (Montgomery
et al. 1968; Feldman et al. 1975). In this respect the solar wind
non-thermals act like an omnipresent electrical and thermal
conduction band of the plasma, performing a role parallel to that
in metals. The recent demonstration of the importance of the
plasma specific thermal force (Scudder 2019b) completes this
identification, identifying the electric and heat flow resistances that
allow a magnetic field-aligned force balance in the ion rest frame.
In making this identification the constraints on  introduced
nearly a century ago for quasi-neutrality in stellar atmospheres,
(Pannekeok 1922; Rosseland 1924), must now include the quasi-
neutrality demands made on force balance caused by the electrical
corollaries of heat transport.

Force balance in the plasma requires that quasi-neutrality
and transport physics are not conceptually separable, as shown
by the dimensionless Generalized Ohm’s Law (GOL; Rossi &
Olbert 1970); organized in the usually descending order of
importance it takes the form:

= + +   2 . 2Pe ( ) 

New terms for our discussion are º E ED  , , the
dimensionless thermal force, (Braginskii 1965; Fitzpatrick
2004; Scudder 2019b), and  the placeholder for the suppressed
inertial terms. Dreicer’s electric field, ED, (Dreicer 1959, 1960)
provides the normalization for the variables in Equation (2);
it is widely accepted as the appropriate yardstick of non-
perturbative significance for parallel electric fields. The thermal
force occurs in tandem with any heat flow allowed in the plasma; it
is always parallel to the direction of the parallel heat flux. In steady
state the thermal force preempts thermoelectric currents that
otherwise would attend heat flows. The relative sizes of these
terms at 1 au are: (i)   20% Pe (Scudder 2019b) and

(ii) -   2e
2

ne( ) (see Appendix C), where the electron
thermal Mach number, º U we e, is only 0.2 at 1 au and lower
inside that radius. Thus, Equation (2) can be estimated above the
base of the corona out to 1 au to be in the range:

= + < - < 
2

1 O 25% O 0.05% . 3Pe ( (∣ ∣) (∣ ∣)) ( )

These estimates show that generally >  2Pe , and that the
thermal force correction augments  (Scudder 2019b) relative
to any estimate based on the pressure Knudsen number alone.
From this the general force balance of GOL (Equation (2))
comes the conceptually useful relation

  2 , 4Pe ( )

implying finite Pe always means finite . In turn, finite 
implies that Pe is non-perturbative.
Perceptions of Knudsen numbers in remote plasmas are now

transferable to the size of the dimensionless parallel electric
field,  in these same locales. With this realization,
perturbatively finite  are understood to be commonplace,
which implies that Dreicer’s work about a peculiarly plasma
effect, the occurrence of runaways (Dreicer 1959, 1960) at any
finite , is directly and widely relevant to astrophysical
transport physics. By contrast the weak gradient premise of
LTE presumes perturbative  ,Pe , ensuring a transport
regime unaffected by runaway physics (see Spitzer 1962).
The speed dependence of Coulomb scattering permits a

positive feedback situation in the presence of a finite  in
which electrons of sufficiently high kinetic energy gain more
energy from the field than they lose scattering off of
background plasma particles. This locally secular process is
called runaway. The kinetic energy threshold for this process
depends inversely on  ; accordingly this process affects fewer
and fewer electrons when  0 , the condition for approach-
ing LTE. Thus, perturbative transport about LTE is indeed
consistent ignoring runaways; the problem is no longer
consistent when a recipe derived for LTE is used for decidedly
non-LTE plasmas as occur routinely in astrophysics.
In Spitzer’s discussion (that is restricted to perturbative

departures from LTE) Equation (2) reduces to  balancing
the  friction, as Spitzer–Härm assumed = 0Pe

Spitzer (see
Equation(25) in Spitzer & Harm 1953).
For more general astrophysical plasmas than those considered

by Spitzer, the inertial terms are still usually small, but now GOL
(Equation (2)) is a balance between the three, generally non-
perturbative forces of inhomogeneity   , ,Pe[ ] . However,
because GOL is a conservation law, it must be true even when
Pe is non-perturbative. This is the new regime of transport
physics required for astrophysical plasma steady states made
inhomogeneous by gravity, rotation, and radiation.
The implication of this new transport regime embedded in

the SERM model presented here is the unavoidable transport of
global particles launched into runaway across the system,
coupled with the local conditions required by quasi-neutrality.
The possibility of a global stationary state in these conditions is
motivated by over 50 yr of solar wind observations.
The commonly occurring finite size of Pe distinguishes

astrophysics as having plasma transport quite distinct from that
in LTE plasmas, assumed by Chapman, Enskog, Spitzer, and
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Braginskii formulations; global and local access (Scudder &
Olbert 1979) must be integrated into the transport description to
generate a more realistic, steady macroscopic description of the
heat flow. SERM represents an initial attempt to do this.

2. Runaway and Steady State?

2.1. Runaway Morphology

Any finite  drives part of the plasma’s eVDF into
runaway, inducing a subset of the local electrons into partial
runaway; they should be viewed as an under damped (UD)
response, where more energy is gained from the emf than lost
by scattering off background ions (Dreicer 1959, 1960). In
Dreicer’s formulation such partial runaways occur for finite
 0.43 , even before catastrophic bulk runaway, character-
ized by large parallel currents, that disrupted early fusion lab
experiments. As argued by Dreicer, the complementary group
of overdamped (OD) lower kinetic energy complements of
velocity space was quasi-ohmic and significantly impacted by
Coulomb drag. The boundary between UD and OD electrons is
a mathematical separatrix implicitly defined by the size of .
(Dreicer 1960; Fuchs et al. 1986).

In the presence of finite E the UD and OD electron
trajectories are separated in pitch angle and speed by a pear-
shaped velocity space separatrix surface, enclosing the ion rest
frame velocity (Fuchs et al. 1986). The minimum kinetic
energy  on the separatrix is found along the direction of
- beE ˆ , defined in thermal units as

v
a

º º


kT
, 52

th
( )



where = --kT d f dElnth
1

OD( ) . Dreicer estimated a 3
(Dreicer 1959), but recent Langevin improvements (Fuchs
et al. 1986) suggest its value is between a< <1.42 3. Solar
wind data at 1 au (not shown) suggest a 2 .

Approaching the regime of thermodynamic equilibrium, the
predicted runaway boundary given by Equation (5) recedes to
infinity as   0Pe in this gradient-free regime. There all
electrons are OD by collisions; global “runaway” trajectories
do not occur; this is the regime where Maxwellians are
expected. Regimes where   0Pe   are very rare in
inhomogeneous astrophysical plasmas (Scudder & Karimabadi
2013), explaining the extremely rare occurrence in natural
plasmas of truly Maxwellian eVDFs.

A finite population of UD runaway particles accompanies a
finite  (Dreicer 1959, 1960). Phase-space characteristic flow
lines for electrons start and remain either (i) outside or (ii)
inside the separatrix. Those outside are UD by collisions and
are increasingly accelerated by EP away from their initial
locale, while the group of low-energy characteristics starting
within the separatrix remain inside it, and are OD by Coulomb
collisional losses. Described at the fluid level, the OD
population comes to a Stokes frictional equilibrium, drifting
with respect to the ion rest frame displaced in the direction of
the applied force, keeping the observed nearly Maxwellian
form via Coulomb collisions (Dreicer 1959, 1960).

The bifurcation of velocity space afforded by this Coulomb-
enabled separatrix allows SERM’s eVDF to have a spectrally
different electron thermal and suprathermal phase space; this
spectral break is also predicted to occur at a boundary specified
by . This explanation is totally consistent with that shown

previously integrating a model kinetic equation in a specific
context, (Scudder & Olbert 1979).

2.2. How So, Steady Runaway?

Dreicer’s focus was explaining transient responses of
laboratory plasmas when experiencing large field-aligned
electric fields. SERM as an astrophysical model addresses
“steady runaway,” which would appear to be an oxymoron.
The basic difference is that the laboratory plasmas tended to

have only mean free path and experiment scales in them, such
that runaway across lmfp usually meant the UD particles were
hitting the experimental “walls,” thus representing large
currents from the plasma to their boundaries and leaving the
ions unshielded, making time dependence guaranteed. In
addition, these early experiments did not traverse strong
variations in background properties before the particles heated
the vacuum chamber boundaries.
In the astrophysical circumstance the scale of the box

(system) is many l ;mfp across these large scales the “external
forces” of the plasma are often organized with scale lengths of
their own, such as those caused by magnetic fields, electrical
potentials, gravity, rotation, pressure gradients, or concentra-
tion gradients. These circumstances admit the possibility that
UD populations from many runaway sites can be in commu-
nication across these intermediate scales, and that the back-
ground forces and collisional frequency variation across them
could be instrumental in assisting recirculation of UD particles
on these intermediate scales. Such recirculation would be
necessary for return current channels to form or be a
concomitant part of the local runaway morphology that could
produce a global view where steadiness and quasi-neutrality
were possible.
The experimental evidence ( =J 0 , Sn Z ne i i , Ue=Ui in

the solar wind suggests that this has happened, despite the very
large  values that are implied by the observed gradients in the
medium (Scudder 2019b). While significant time dependence
occurs in astrophysical systems, considerable correspondence
between data and theory has been exhibited assuming
astrophysical steady systems are realized ¶ ¶ =t 0( ).

2.3. The Gauntlet: Steady Runaway

In recognition of the likely hesitancy to accept the possibility
of runaway physics embedded in a steady description,
considerable effort is expended below to see if such a model’s
predictions are contradicted by the vast volume of solar wind
data compiled with in situ interplanetary observations. The
short summary is that no contradiction has yet been identified,
while nearly every known correlation in the electron properties
of the eVDF is provided an explanation given if runaway
physics is respected and its implications are followed to their
conclusions. Because many of these properties have been
archived repeatedly by multiple experimental groups and
SERM’s explanation for their behavior is the first in 50 yr,
SERM is worthy of further consideration.

3. Challenges for SERM

Six immediate questions the SERM model must answer are
how can the “transient” runaway concept (i) produce long-term
correlations between the suprathermal density fraction and the
bulk speed at 1 au; how can finite and thus strong  (ii) be
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consistent with, rather than disrupt, quasi-neutrality by run-
away production; (iii) enforce zero parallel current in the
manner observed with the thermals always lagging the ions;
(iv) sustain a steady heat flow of the appropriate size and
direction; systematically produce ubiquitous (v) leptokurtic
eVDF; and (vi) explain other quantitatively well known,
persistent correlations among the shape properties of the eVDF.

3.1. Steady

To achieve a steady state, the SERM asserts that the density
fraction implied by the time average of UD transits at all pitch
angles and allowable energies must balance the promoted
runaway density fraction dF lost by that local observer,
yielding a global-local compatibility condition that restates a
pervasive quasi-neutrality condition:

ò d= 


w x d w xf n, , 6
x

e F
UD

UD
3( ) ( ( )) ( )

( ( )




where the limits of integration encompass the phase space
outside the locally determined velocity separatrix between the
OD and UD sub-fluids, and = -w v U is the random velocity
of the electron in the ion rest frame with inertial frame bulk
velocity U. It should be noted that had Equation (6) not been
imposed, the incidence of electron runaway from so, would
have had the corollary that the ions at so would no longer be
shielded, a violation of quasi-neutrality incompatible with a
search for a stationary quasi-neutral situation.

The second SERM approach to the steady-state requirement
postulates that =J 0 occurs on the same timescale over which
eVDF is measured. This implies that the UD electron number
flux in the ion rest frame should represent a neutralizing return
current, equal and opposite to the starward OD number flux
driven by EP opposed by significant coulomb resistance. Thus,
SERM’s second postulate becomes

ò ò= -
 

w b d w w b d wf w f w , 7
OD

OD
3

UD
UD

3( ) · ˆ ( ) · ˆ ( )
( ) ( ) 

where the limits of integration are complementary, but together
cover all of velocity space. This condition enforces no charge

polarization along field lines and hence no space charge
changes in time along them.

3.2. Trial Function Approach

Ideally, a solution to the kinetic equation that meets the
conditions of Equations (6) and (7) is desired. An alternate
approach taken here is to suggest a plausible trial function f 0

that meets these integral conditions that have minimal, spatially
dependent free parameters that can be constrained by imposing
the conservation equations of the two-fluid system, including
thorough consideration of important collision terms. This full
program involves demonstrating that such an approach is
closed (J. D. Scudder 2019, in preparation).

3.3. Symmetric Trial Function: f 0

Fortunately, as is developed below, the building of this trial
function can proceed and be tested in two parts based on its
velocity space symmetry. The transport signatures require a
trial function with anti-symmetric parts along the magnetic
field. The symmetric parts are the total contributors to the
density, the dominant parts of the pressure, and kurtosis
tensors, to name just a few. The heat flow moment depends on
both the existence of the anti-symmetric parts, but also scales
with the number density of the electrons that support the heat
flow. The trial function for the symmetric parts is denoted f 0,
while the total distribution with anti-symmetric parts is denoted
f 1.
The usual test function for Spitzer–Braginskii and C-E

expansions is the convected Maxwellian; this approach
perturbatively seeks to correct this symmetric distribution,
producing a heat flow, viscosity etc. The observed heat flux
asymmetries are not perturbative corrections to a Maxwel-
lian eVDF.

3.4. Suprathermal Density versus SW State?

Before constructing the mathematical trial function of
SERM’s choice a first hurdle is to see heuristically if there
are enough locally UD electrons predicted to explain the
observed nonthermal densities observed in the solar wind as a
function of solar wind speed (Feldman et al. 1975, 1978, 1979).
The SERM postulates that steady runaway is only allowed if

the steady state remains quasi-neutral (Equation (6)) and
becomes the steady-state density fraction observed in the UD
energy range,. Also, dF must be restored to the same fraction
that left according to local runaway theory’s prediction. In
symbols this becomes

d =   , 8F ( ) ( ) ( ) 

where  ( ) is the density fraction numerically computed to
have left the location with  after the separatrix has itself been
numerically identified knowing .
It should be noted that when a plasma instrument samples

the eVDF at so it is actually performing a time average over
those electrons whose worldlines happen to pass through so
and the instrument’s passband during the instrument’s integra-
tion time. In this sense it is integrating over “prehistories” (i.e.,
characteristics) of particles that have gotten to so with the
correct arrival time, velocity, and energy for collection. In the
OD regime the spatial volume traversed by these trajectories is
smaller than those for the UD energy range. All trajectories
seen in the local UD energy range are a convolution over a

Figure 1. Suprathermal density fraction vs. solar wind speed U at 1 au:
dF (predicted) vs. dF(observed), n n0.59 h c as argued in Appendix B. Data are
adapted from (Feldman et al. 1979). The dashed–dotted lines indicate the
possible variability of dF expected from the inferred uncertainty of  U au, 1( )
allowed by the reported electron radial pressure profiles.
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wide spatial domain and can be thought of as electrons
launched into runaway at some ¢ ¹s so. This condition of
quasi-neutrality (Equations (6), (8)) and (7) are constraining the
immense freedom otherwise possible in this energy regime.

Equation (8) embeds the essence of the speed dependence of
the Coulomb cross section into the transport problem; note that
this is not an asymptotic part of this speed dependence but
represents a holistic approach to considering the impacts on UD
and OD domains at the same time. The balance between these
two domains is controlled by the size of . With  being
finite there is a tradeoff to be made, just as when it vanishes
there is not and the UD volume vanishes.

Because Equation (5) scales inversely with , stronger 
implies lower kinetic energy thresholds for runaway electrons,
resulting in a larger density fraction of UD runaways, dF .
However, larger E produces higher solar wind speeds (Meyer-
Vernet 2007), immediately predicting higher suprathermal
density fractions, dF , should accompany higher flow speeds.
This morphology has been observed for decades (Feldman
et al. 1975, 1978, 1979), but never explained until the present
SERM model.

The red filled circles in Figure 1 show the long-term
correlation at 1 au of the observed suprathermal density fraction,
estimated as d n n0.59F h e with solar wind speed, U, where
nh/ne is the halo fit density fraction (see Appendix B for our
rationale). The red curve shows the predictions of the SERM
model discussed in this paper, using sketchily available electron
radial pressure profiles (Marsch et al. 1989) and the electron
momentum equation to determine   2Pe and then predict
the d =  F ( ) summarized by the blue curve in Figure 3. The
dotted–dashed curves (in Figure 1) suggest compatible limits
permitted by the sketchy radial profile data available as a
function of U. Figure 1 demonstrates that SERM’s runaway
picture can supply the observed density fraction of suprathermals
routinely observed in the solar wind, as well as their expected
interrelationship with solar wind speed.

3.5. Trial Function Choice

SERM seizes on the existence of a bifurcation in the
Coulomb physics above a minimal kinetic energy  to assume
that its trial function =f eVDFo o could be allowed to be non-
perturbatively kurtotic above a prescribed kinetic energy,  ( )
solely determined by . At the same time the arguments of
Dreicer make a persuasive case that the OD electrons within the
bifurcation with < E should be strongly influenced by
Coulomb scattering and be representable as a convected
Maxwellian form. This suggestion has been adopted for f 0

and is shown (with no convection) in Figure 2.
SERM assumes that f 0 has the following plausible proper-

ties: (i) is continuous at the bifurcation boundary between (OD)
thermal and (UD) suprathermal regimes; (ii) permits a spectral
break at the minimum kinetic energy for runaway  ; (iii) the
OD population is reasonably assumed to be a truncated
Maxwellian below  ; and (iv) the UD subspace modeled either
by: (a) a possibly different Maxwellian; or (b) a power law in
speed.

The ubiquitous occurrence and success of the two Maxwel-
lian core-halo models (Feldman et al. 1975), suggests that the
proposed function space for f 0 is expansive enough to permit
such a distribution if the conservation equations require. Model
(a) for the UD part of the eVDF has the wider solar wind
database for comparison and will be explicitly developed here.

Similar tendencies to those reported here are seen with the
power-law model (see Appendix B). This chosen function space
for f 0 allows departures from a single Maxwellian, but does not
enforce any relationship between spectral indices T T, sth[ ] of the
OD and UD regimes; it does build in the runaway theory’s 
dependence of any possible hinge point at  in the context of
Coulomb scattering. When satisfying the global-local constrain-
ing equations mentioned above there is no a priori preference
in this function space for leptokurtic ( >T T 1s th ), platykurtic
( <T T 1s th ), or Maxwellian ( =T T 1s th ) forms.

3.6. Why is f o Isotropic with Runaways?

Dreicer’s original suggestion for runaway phenomena gives
the impression that the UD electrons in runaways would be
found in velocity space to the left of a parabola whose symmetry
axis was along bE ;ˆ  more recent discussions by Fuchs and
colleagues have shown that the separatrix between OD and UD
is a closed elliptical curve, off center about the origin with the
same symmetry axis as Dreicer’s. This revision clearly
establishes that those particles launched from the separatrix are
inserted in all of 4π, albeit with intensity variations that favor the
force direction of the field on the electrons.
It is important to explore why the local runaway’s

preferential injection toward the proximate star might be
involved in supporting the observed quasi steady state near
isotropy of the nonthermal eVDF. If all collisions were elastic,
a returning, originally stellar-headed runaway would have a
comparable kinetic energy and sign-reversed cosine of pitch
angle as when it left. The plasma at so is almost collisionally
transparent to their transit, allowing “passage through” so as
UD particles within the suprathermal pattern of Figure 2, but
now heading toward the astropause.
Thus, suprathermal runaway in near symmetry in the

presence of a preferred orientation of the accelerating force is
a zeroth-order manifestation of the nearly reversible recircula-
tion of the UD particles in the star’s increasing magnetic field
and that the sites of runaway promotions occur on both sides of
the observer’s position. The collisions experienced can change
the runaway’s returning pitch angle and can also cause some

Figure 2. Assumed non-local kurtotic local kinetic energy E spectrum, f E0 ( ),
compatible with the local runaway hypothesis explored in this paper. It
possesses a suprathermal density fraction, dF , for energies above a break kinetic
energy  with two abutting, truncated, but continuous Maxwellian components
with ratios of semi-logarithmic derivatives indicated in the ratio t º T Tsth .
The interrelated parameters for the symmetric shape of f 0 are ϖ, d ,F , and τ,
all determined by  (see Equations (5) and (11)).
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starward-headed runaways to precipitate into the chromo-
sphere. Away from  , almost all pitch angles are equally
eligible for promotion into stellar runaway, leading to a similar
range of pitch angles occupied for those mirroring runaways.
The OD particles are maintained nearly isotropic by strong
collisions, and remain nearly so if their ohmic drift is subsonic
(Dreicer 1959, 1960).

Directional bias is still required to support the counter-
drifting OD and UD components that implement zero current,
heat flux, and thermal force. These are all transport signatures
involving odd velocity space moments of the eVDF. In terms
of spherical harmonics, these effects would be represented
by admixtures of odd spherical harmonics +Y ℓ

m
2 1 that are

orthogonal to the spherically symmetric description of the f 0

shown in Figure 2. As odd harmonics they do not contribute to
the density of either UD or OD subcomponents; this permits
reasonable comparisons of even-moment quantities like partial
densities, pressures, or kurtosis between observations and an
eVDF based on f 0 without its odd-moment transport contribu-
tions included.

4. SERM Function Space f o

The function space f 0 respects runaway physics in several
ways: (i) it provides for a spectral change at the minimum
energy,  , for runaways to be possible; and (ii) acknowledges
the much stronger role of Coulomb collisions inside the
separatrix that Dreicer argued would lead that part of the eVDF
being modeled as a convected Maxwellian. These transport
signatures will be addressed in f ;1 for the present f 0 takes the
analytic form

t v g v
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where =x E kT2
thermal, τ, and v2 are defined in Figure 2 and

Equation (5);Q g( ) is the Heaviside step function. This function
space choice has a fractional suprathermal density dF that is
constrained by the identity
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Runaway physics suggests the size of dF is already determined
by  via steady-state Equation (8). Used with Equation (10) it
becomes clear that τ is itself only function of :
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where v a= 2
 and where ºy e yErfcx Erfcy2( ) ( ). Because

ϖ and dF are both functions of , Equation (11) implies that τ
is a function of  that numerically is shown to be one-to-one
by comparing the red and blue curves in Figure 3. The red
curve for the ratio of OD and UD mean energies

t= -E E T Ts sth th
2 is seen to be one-to-one and anti-

correlated with dF , and, therefore one-to-one and anti-correlated
with . The green eVDF break point energy  curve is also
inversely correlated in a one-to-one manner with dF because of
Equation (5).

Because τ is operationally found to be less than unity,
implying E E 1s th , implementing these SERM constraints

has also just correctly inferred the lepto- versus platy- kurtic
property commonly observed in the solar wind eVDF, with

>T Thalo core in the solar wind eVDF (Feldman et al. 1975).
Conceptually, Equation (11) has established that all of the

shape parameters of f 0 are functions of the . This implies
there are many correlations between and among the parameters
that determine f 0 that are now understandable by solving for 
in terms of one of these shape parameters and inserting this
dependence for that of the electric field in another shape
variable, generating an interrelationship free of any outward
dependence on .
At the two-fluid level the parallel electric field is essentially

determined by the electron momentum equation, including the
thermal force. If EP is chosen to be consistent with that force
balance, the ensuing chains of shape parameters for f 0 are
functionally entrained to other moment variables of the plasma
two-fluid description. This bodes well for attempting a closure
via SERM within the properly closed two-fluid equations (J. D.
Scudder 2019, in preparation). The most troubling problem for
closures is securing a sufficiently flexible but defensible
velocity space functional description that remains positive,
with spatially varying shape parameters computable from the
moments of the species equations (see Scudder 2019a).
The observed range at 1 au of these shape parameters that

also determines the nonthermal properties of the solar wind
electrons is shown by the thick colored bars along the perimeter
of Figure 3. They reveal the following:

(1) The magenta colored bar indicates the range of dF seen at
1 au over 14 yr of solar wind conditions (Feldman et al.
1975, 1978, 1979).

(2) The vertical dashed lines from these extremes intersect
the red ratio of mean energies curve, predicting an
expected range of T Ts th (indicated by the thick red
vertical segment left axis) that should attend the observed
range of dF . The extent of this SERM inferred range for
T Ts th at 1 au nearly perfectly predicts that observed in
the solar wind literature.

Figure 3. Behavior implied by Equation (11) for the expected correlated
nonthermal properties of of the SERM eVDF at a given runaway number
density fraction, dF at the specified dimensionless parallel electric field 
predicted by the runaway (Fuchs et al. 1986). All parameter curves crossed by a
given vertical line are correlated properties in the same VDF. Ranges of solar
wind electron parameters, from decades of observations for properties with a
given colored curve, are shown by the thick colored bars on the plot perimeter.
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(3) With this procedure higher T Ts th ratios are suggested to
accompany lower dF , an observed property known since
the 1970s, but never explained.

(4) SERM also suggests the observed 1 au range (4–7) of 
indicated by the olive bar (Feldman et al. 1978).

(5) SERM’s suggested range for  1 au( ) is indicated by
thick blue segment on the right edge of Figure 3, using
the magenta observed range of dF as before. The few
estimates of  1 au( ) in the literature are in this range
(Scudder 1996a, 1996b; Issautier et al. 1998). A parallel
study using Helios data fully confirms the SERM
suggested range of  (Scudder 2019b).

(6) The bulk speed dependence from Helios of  U( ) has
already been used in the red curve for d versusFobs

U Uobs( ( )) in Figure 1.

The highly reproducible and correlated values of
t d U U U, ,F( ) ( ) ( ) in 1 au solar wind data are explained by
SERM through their common ties to  and U to . The
organization with solar wind speed can be viewed as
determined by the requisite  U( ) required for a quasi-neutral
wind of speed U implicit in Figure 1.

These quantitative explanations at 1 au of the solar wind
eVDF properties and their interrelationships and reproducibility
of the ubiquitous leptokurtic eVDF are the first of their kind
since their initial reports 50 yr ago (Montgomery et al. 1968).

5. SERM’s Zero-current Condition

However, the full predictive capability of SERM requires
consideration of the determinants of the odd velocity moments
that control the parallel thermal force , parallel current JP,
and parallel heat flux qP, all of which require odd harmonic
content not present in f o.

The second global-local premise of SERM (Equation (7))
demands that the eVDF in the UD domain in steady state
provide a local return current to enable =J 0 after first
considering the OD response to the forces they feel. That this
requirement is non-trivial can be understood better by looking
at the response of the OD electrons within the separatrix. In
the absence of gravity the microscopic force is supplied by
the omnipresent EP that drives the OD electrons, against the
Coulomb drag provided by the ions (and weakly by the UD
electrons) until they come to a time stationary steady drift with
no net force, lagging the ions.

Dreicer studied the related problem of electrons flowing
through ions under an applied EP and showed that a final steady
state could be found for < 0.43 in which the electrons
were moving steadily at a thermal Mach number m =

- µ -b U U we i c
ˆ · ( ) . This motion is toward the Sun in
the ion frame and is precisely the reported behavior of the core
drift (Feldman et al. 1975) with reported m -O V wa c( ) .

The return current requirement of SERM in Equation (7) has
five corollaries: (i) =J 0; (ii) ensures the star does not charge;
(iii) makes the UD population discernible in the eVDF if only
by its counterposed drift to that of the OD population. Together
with SERM’s Equation (6) the fourth notable achievement is
(iv) that the lowest-order eVDF consistent with Coulomb
physics is skewed, carrying a non-perturbative heat flow, qP, a
result that follows from the finding that the lowest-order eVDF
is kurtotic for finite . With SERM’s specific preference for
leptokurtic shapes comes the fifth notable result: (v) the heat
flow is suggested to be parallel to the direction of E and it is

algebraically determined by the difference of enthalpy fluxes of
the OD and UD populations, a pattern noted in the data
inventory of solar wind data (Feldman et al. 1975).
In this way the SERM model provides the first quantitative

theoretical explanation for the ubiquitous, nonthermal, counter-
drifting, core-halo type solar wind distributions reported since
1968 (Montgomery et al. 1968; Feldman et al. 1975, 1978,
1979). Subsequent steps in SERM’s direction include a model
kinetic equation (Scudder & Olbert 1979), enhanced kinetic
equation modeling (Olbert 1983), and Monte-Carlo calcula-
tions (Landi & Pantelinni 2003).
SERM relates nearly all signatures in the nonthermal eVDF

to the size of  in the self-consistent solar wind problem. This
connection between velocity space features and macroscopic
moment quantities is critical for building a successful closure
(J. D. Scudder 2019, in preparation).

5.1. SERM: Positive eVDF, Transport, Implementation

SERM’s approach to this problem is to extend the function
space so that f fo 1, where (i) f 1 has odd moments, while (ii)
is constrained to everywhere be a positive definite eVDF with

=J 0 , without enforcing =J 0 as a perturbative statement.
Considerable hints that our process can describe nature are
found in the core-halo parameterization of the solar wind eVDF
(Feldman et al. 1975). The thermals and suprathermals were
modeled with their own (anisotropic) convecting Maxwellian
forms. It was demonstrated that the thermals and suprathermals
drifted in opposite directions along the magnetic field in the ion
frame of reference, compatible with satisfying zero current. The
cross-field drifts of the thermals, suprathermals, and ions were
shown to be the same within errors.

5.2. Toward Odd Moments, Closure with >f 01

When the transport construction of SERM is complete, the
eVDF will look like the core-halo-strahl eVDFs that have been
observed in the solar wind. Two feasibility studies that suggest
the transport description is near involve (I) production of heat
flows like those observed; and (II) identifying conditions when
SERM eVDFs possess strahl like features.
(I) Above we have shown that the shape parameters of f 0

exclusively favor leptokurtic nonthermal f 0. SERM illustrates
how the microscopic forces produce different results inside
versus outside of the velocity space separatrix. With the
possibility of differential responses of UD and OD required
when ¹ 0 , there is in general a heat flow implied if this
response enforces =J 0 (Scudder 2019b). SERM supports a
heat flow like that observed in the core-halo model (Feldman
et al. 1975), well approximated by

= D -

=- D -

q n U k T T

n U k T T

5

2
5

2
, 12

h h h c

c c c h

,

,

( )

( ) ( )

 
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/

which is only non-zero if the composite eVDF is kurtotic and
only has the correct sense with the numerically integrated heat
flow if the eVDF is leptokurtic with >T Th c and DUh, leads
the ions. All these apparently arbitrary free parameters in
Equation (12) are predicted by SERM.
Although the SERM model will have a structure like this,

the missing ingredient(s) are the constraining equation(s) for
the drifts of the OD electrons in the ion’s rest frame. These
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equations with closure are forthcoming (J. D. Scudder 2019, in
preparation).

(II) A common feature of the highest-speed winds is an
astropause-headed narrow pitch angle enhancement in the
eVDF at intermediate energies, called the strahl or ray
(Rosenbauer et al. 1977). Figure 4 shows an illustrative SERM
f 1 eVDF using high-speed solar wind parameters that are
consistent with strahl observations and occurrence morph-
ology. It shows that SERM can predict magnetic field-aligned
pitch angle enhancements when the OD electrons are driven
hard by the strong  that accompanies higher speed winds at
1 au. The top inset shows eVDF sections (black) along and
(cyan) perpendicular to the magnetic field direction, while the
bottom inset shows a contour picture (at equal increments) of
the skewed nonthermal eVDF sampled in a plane containing
the magnetic field made up of both UD and OD populations.
The SERM model suggests the indicated strahl feature emerges
gradually at 1 au as  increases, a situation synonymous with
increasing wind speeds (Scudder 2019b, 2019c) and core
counter-drift behavior (Pulupa et al. 2014). This figure also
shows, with its more widely spaced contours at higher energies,
the leptokurtic character of the eVDF predicted by the SERM
model and invariably observed. The displacement of the OD
and UD populations in opposite directions along b̂ yield zero
current and a clear skewness, indicative of heat flow. The
displacement at low energies is hard to resolve given the figure
size limitations.

5.3. SERM and Exospheric Modeling

SERM is significantly different from the exospheric picture
that, while keeping the eVDF positive everywhere, ignores
collisions altogether. The exospheric picture identifies positive

and negative total energy states with the suprathermal and
thermal electron populations, but cannot produce sunward
particles in the suprathermal energy range (except by boundary
conditions). Nor can it explain why positive energy states
should be spectrally different (leptokurtic or platykurtic) from
the negative energy states (except by adjusting boundary
conditions for this purpose), or explain how the negative
energy electrons move nearly with the ions, as observed.

5.4. SERM and Coulomb Collisions

In SERM the Coulomb collisions and finite E are included
from the outset; together they (i) determine the velocity space
separatrix of the eVDF; (ii) explain the segregation of velocity
space with distinct properties; (iii) produce different prehis-
tories for UD and OD electrons; (iv) cause the OD electrons
inside the separatrix to lag the ions as an overdamped
mechanics problem; (v) strain the system’s quasi-neutrality
by the ohmic response of the OD electrons performing this
differential drag; (vi) require the return current of the UD
damped particles; (vii) dictate the density fraction of UD
particles in steady state to shield the protons; (viii) produce the
skewness for the lowest-order heat flux; and (ix) associate
strahl morphology with  in the high-speed wind at 1 au.

5.5. SERM and Conduction Band

In a similar manner the conduction band in a metal is the
zone where global potential differences are resolved, where
currents flow until they are resolved, and where heat flows as a
corollary of the induced gradients and the finite random speed
distributions of the particles. The UD electrons are concep-
tually the thermal and electrical conduction band of an
inhomogeneous fully ionized plasma; the analog of the
crystalline lattice is the background ions of the quasi-neutral
gas with which there is significant frictional coupling, and
where the OD electrons come to a Drude-like equilibrium that
through UD return current drifts ensure =J 0 equilibrium.

6. SERM versus LTE in Astroplasmas?

The predicted eVDF of SERM represents the first kinetic
explanation of why the heat flow observed in the solar wind is
controlled by suprathermals in the eVDF. This form is totally
unexpected in the traditional C-E or N-moment gradient
expansions about Maxwellian or bi-Maxwellians. At the same
time SERM quantitatively explains the size of nearly all
nonthermal shape parameters of the observed solar wind
eVDF, including many mysterious, but ubiquitous correlations
between them that have remained unexplained for over 50 yr.
SERM also provides a rationale for why zero current is
supported with UD electrons leading the ions and OD electrons
lagging, rather than the reverse pattern that also satisfies zero
current.
SERM’s relevance for astrophysical plasmas is assured by

the common occurrence of certain plasma parameters that occur
in the solar wind and most astrophysical plasmas between the
stars: (i) finite pressure Knudsen numbers, (ii) absence of
coupling to the radiation field, (iii) flow speeds that are
subsonic relative to the electrons, and (iv) temperatures high
enough for heat conduction to be competitive in the plasmas
energetics. As none of these parameter regimes are especially
restrictive, the nonthermal eVDF of SERM should be a
common occurrence outside the nominal radii of most stars. At

Figure 4. SERM eVDF in high-speed 1 au conditions. Note the field-aligned
feature akin to the reported strahl. “Tags” on contour lines indicate the
downhill direction.
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the very least this possibility should be a routine consideration
for the interpretation of the plasma properties in remote photon
source regions, the possible dynamics of plasmas in these
source regions, and for the types of plasma dynamics that are
permitted. This domain has a number of theoretical surprises
(Scudder 1992; Meyer-Vernet et al. 1995) compared to plasma
predictions predicted by LTE closures that have until recently
heavily biased the large scale pictures of these regimes.
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by R. Merlino, U of Iowa. The energetic support for innovative
thrusts in research by NASA-SMD is sincerely appreciated.
Editorial assistance by SED for this research was also
extremely helpful. Publication costs were paid by NASA grant
80NSSC19K1114.

Appendix A
Inertial GOL Corrections

Starting from conservation of mass in a spherically
symmetric steady wind (assuming - < < -d n d r8 ln ln 2),
the acceleration power law is given by
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where the range spans from near the transition region to 1 au.

Appendix B
Alternate UD Function Space: Maxwellian+Power Law

Tails

The results in Equation (4) presume juxtaposed Maxwellians
for the eVDF function space as shown in Figure 2. Given the
large volume of 1 au electron data analyzed with the core-halo
parameterization (Montgomery et al. 1968), a Maxwellian–
Maxwellian eVDF function space was chosen for the
experimental support by the demonstrations of the main text.
The UD Maxwellian with its own e-folding provides
convergent expressions for the partial density and partial
pressure of the UD part of the inferred distribution function for
a wide range of suprathermal parameters, including uncon-
strained UD density fractions.

By contrast, choosing a power-law model for the UD part of
the eVDF can give similar relations, but it has artificial
additional restrictions so that a finite partial pressure of the UD
component precludes v  1.1419; this in turn precludes the
UD fraction from being modeled for d > 0.106F , which is
unduly restrictive for wind core-halo data sets. These effects
could be corrected using relativistic power laws at the expense
of further complexity, but were not considered further.

Similar comments also make the non-relativistic kappa
function (Olbert 1968), unattractive for the UD trial function
for this modeling.

Appendix C
Difficulties Assessing dF from Core-halo Modeling

SERM’s bookkeeping of the UD density fraction, dF , is
based on the compartmentalization of runaway physics into two

disjoint energy regimes. The core-halo characterization fits the
observed eVDF to the superposition of two drifting bi-
Maxwellians. This implies that some of the density attributed
to the fitted halo population actually derives from phase-space
density under that of the core probability distribution. Because
the core occupies a sphere of radius approximately 1 halo
thermal speed, this overlap is significant and must be accounted
for when quantitatively making the SERM to core-halo
modeling correspondence.
Theoretically the runaway fraction above ϖ is less than the

“halo” Maxwellian fit density (often reported in the literature
(Feldman et al. 1975) by the multiplicative factor

vt
d

d
vt

p
vtº = +

v t
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

e2
Erfc , 14F

halo Fit

2 2

( ) ( ) ( )

illustrated in red (Figure 5) across the range of T Ts th that occur
at 1 au. The variation of the argument v t ( ) ( )  in the wind
data is implied by the variation of  illustrated in Figure 3,
which in turn implies the variation of t =- T Ts

2
th( )

indicated in orange on the figure’s lower axis. The observed
mean á ñ and its variability (Table1 Feldman et al. 1979) are
indicated in cyan in Figure 5. This 1 au mean value á ñ 0.59
is fully compatible with the theoretical estimate made from
averaging SERM’s variability of the red curve  over the 1 au
data’s horizontal variability (orange).
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