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Abstract

Coronal and solar wind physics have long used plasma fluid models to motivate physical explanations of
observations; the hypothesized model is introduced into a fluid simulation to see if observations are reproduced.
This procedure is called Verification of Mechanism (VoM) modeling; it is contingent on the self consistency of the
closure that made the simulation possible. Inner corona VoMs typically assume weak gradient Spitzer–Braginskii
closures. Four prominent coronal VoMs in place for decades are shown to contradict their closure hypotheses,
demonstrably shaping coronal and solar wind research. These findings have been possible since 1953. This
unchallenged evolution is worth understanding, so that similarly flawed VoMs do not continue to mislead new
research. As a first step in this direction, this paper organizes four a posteriori quantitative tests for the purpose of
easily screening the physical integrity of a proposed VoM. A fifth screen involving the thermal force, the tandem of
the heat flux, has been shown to be mandatory when VoMs involve species-specific energy equations. VoM
modeling will soon be required to advance Parker Solar Probe and Solar Orbiter science. Such modeling cannot
advance the physical understanding sought by these missions unless the closures adopted (i) are demonstrated to be
self consistent for the VoM plasma Knudsen numbers, (ii) are verified a posteriori as possessing nonnegative VDFs
throughout the simulated volume, and (iii) include the physical completeness of thermal force physics when the
VoM requires species-specific energy equations.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Solar corona (1483); Astrophysical fluid dynamics
(101); Solar coronal heating (1989)

1. The Problem

Identifying the precise mechanism essential for the formation
of the solar corona and the extreme states of the solar wind
expansion are the central objectives of NASA’s recently
launched Parker Solar Probe and ESA’s soon to be launched
Solar Orbiter spacecraft. These bold scientific missions seek to
screen for the physical mechanism (s) necessary to self-
consistently explain the apparently common circumstances for
the existence of these key regions in our star (and others). The
first rung of such explanations would be a physically defensible
VoM model that demonstrates cause and effect relationships of
the physical mechanism and the observed morphology being
explained. The closed moment plasma fluid equations are
invariably used to demonstrate the behavior of the causal
mechanism and its observational consequences.

For the VoM demonstration to be useful, such a VoM must
be free from concerns that the fluid equations are closed
improperly when being used to demonstrate the mechanism’s
role in causing the observed signatures. As an example, if the
VoM involved the effects of a steepening wave train, a possible
concern might be violations of the weak gradient premises of
the closure in the steeper parts of the train in the fluid solution
offered. In this way it is possible that closures may be self
consistent for the spatial locale without the suggested
mechanism, but no longer adequate for the purposes of
evaluating the mechanism’s effects in the same region.

Central to realizing this objective is producing VoM models
that are based on a consistent set of physical first principles
with negligible reliance on ad hoc or adjustable free

parameters, or bridging functions to enhance model data
agreement. Because of the wide range of macroscopic
conditions involved in the low corona and wind acceleration
region, these VoMs invariably use quasi-neutral fluid scale
models for the plasma.
Viable fluid models for a plasma rely on the validity of

delicate averaging and other approximations called closure
approaches; they attempt to approximate the full physical
description of the plasma, hoping to avoid the technical
difficulties of attempting a full kinetic model following the
evolution and interactions of electrons, ions and the underlying
electro-magnetic field that may not even be computationally
tractable. It is generally unknown whether consistent closures
can be found for astrophysical systems with large variations of
their macroscopic parameters; consistency can only be
demonstrated by a posterori validation of the solutions
produced by the closure of the type discussed below (CJC).
Large scale plasma fluid modeling presumes the main-

tenance of quasi-neutrality; the intrinsic inhomogeneities of
astrophysics induced by gravity, rotation and radiation require
substantial parallel electric fields EP as part of any steady
spatial equilibria. These plasmas are different from those in
Local Thermodynamic Equilibrium (LTE) which have no
steady-state EP. Accordingly, the closure description of these
fluid plasmas may well be different from those described as
being only slightly removed from LTE. Nonetheless, at present
most astrophysical fluid plasma closure recipes used for VoMs
are borrowed from derivations made for other plasma systems
infinitesimally displaced from LTE; closure recipes associated
with the names of Spitzer & Härm (1953) and Braginskii
(1965) are of this near LTE type.
Fluid models can be very informative and attractive since they

are computationally less demanding than kinetic descriptions. A
relevant, validated closure approach enables this efficiency. A

The Astrophysical Journal, 885:148 (13pp), 2019 November 10 https://doi.org/10.3847/1538-4357/ab48e0
© 2019. The American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-7975-5630
https://orcid.org/0000-0001-7975-5630
https://orcid.org/0000-0001-7975-5630
http://astrothesaurus.org/uat/1534
http://astrothesaurus.org/uat/1483
http://astrothesaurus.org/uat/101
http://astrothesaurus.org/uat/101
http://astrothesaurus.org/uat/1989
https://doi.org/10.3847/1538-4357/ab48e0
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab48e0&domain=pdf&date_stamp=2019-11-11
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab48e0&domain=pdf&date_stamp=2019-11-11
http://creativecommons.org/licenses/by/3.0/


relevant closure approach is usually framed for the system at hand
and is likely not relevant when borrowed from another system.
While it is common to use the same fluid closure for the entire
problem at hand, it is not known ab initio if this approach will be
consistent across the entire modeled problem; approximations
valid in one regime may collapse before the spatial volume being
modeled is traversed. This consideration is an ever present worry
in plasma fluid scale plasma modeling and thus, VoMs. The only
known antidote for this problem is a posteriori validation, a
process discussed below and labeled Completely Justified
Closure (CJC).

The closure approach for a system is a process, not a
formulaic panacea for the kinetic complications being avoided.
One tentative outcome of the closure process is a mathema-
tically rigorous derivation of the closure rule (CR); this rule (if
derived for the system at hand) assumes enough things are true
about the behavior of the “yet to be found fluid solutions” to
allow the conditional replacement of the kinetic descriptions
with a finite number of fluid equations for the plasma fluid
moments. While a BCR or CR does have a formulaic character,
the closure approach does not terminate here.

The CR is tentative, derived by leveraging one or more
assumptions about the properties of the still unknown fluid
solutions of the system under study. The fluid solutions found
with the tentative CR have no value for the VoM at hand
unless they are “validated” a posteriori to be consistent with
the assumptions made to derive the CR. Addressing all parts of
the last sentence is the definition of the CJC approach for the
specific problem at hand.

Below we use the concept of CJC as different from the CR;
CJC implies that the “hypotheses-closure-rule-retro-validation”
chain has been completed for the specific problem at hand. By
contrast, the typical VoM in the present literature uses the
adopted or borrowed CR as the only recipe for avoiding
solutions of the kinetic equations. As the examples below
show, the CJC retro-validation of the CR have never been
considered; the hypothesized properties of the solution enabled
by the closure are never verified as being consistent with the
suppositions that enabled the “rigor” of the CR’s derivation.

Nonetheless, using the CR alone the fluid solutions can be
found and are usually internally inconsistent. Surprising, but
true, these flawed solutions possess no visibly untoward
properties; nonetheless, upon asking the right questions of
their smooth profiles they usually contradict the presumptions
that allowed the CR to be advanced in the first place.

The minimal set of CJC physical hurdles to be surmounted
by any VoM model involve demonstrating that the CR has not
allowed a variation in the fluid solutions that was precluded by
the reasoning assumed when advancing the CR. Being a
minimal set, passing the CJC hurdles does not guarantee that
the model problem’s fluid solution for the VoM is totally
consistent with what the unknown kinetic solution would have
produced.

The CJC hurdles serve to screen against relying on solutions
with rudimentary violations of mathematical and physical
consistency. The first two of the set below involve mathema-
tical consistency of the typically perturbative CR formulations:
(i) are its results consistently perturbative as assumed by the
CR? (ii) is the approach convergent? The second two hurdles
involve physical consistency at a very rudimentary level: (iii)
does the underlying VDF premise of the closure remain
essentially nonnegative definite across the fluid solution, and if

accessible (iv) do the observed VDF emulate the VDF that
underlie the closure? The mathematical tests speak to
perturbation rigor expected by the CR; the physical tests about
nonnegativity of the VDF speak to the viability of the VDF
function space for the kinetic description as approximated.
These conditions are deeply related; demonstration that any of
the four hurdles are violated implies the CR is vacated for the
system inventoried. In this sense these hurdles serve as vetoes
of CR proposals and represent a minimalist check on the
integrity of the VoM.
The absence of the thermal force in the fluid equations when

different energy equations are required in the VoM serves as
another veto: essential incompleteness of the plasma description.
When a plasma supports heat conduction it also supports a tandem
thermal force that together allows steady heat to flow without
electrical current. In this circumstance the thermal force is the
enforcer of charge neutrality as part of the Generalized Ohm’s
Law (Spitzer & Härm 1953; Braginskii 1965; Rossi &
Olbert 1970; Fitzpatrick 2014; Scudder 2019a).
This paper looks carefully at 4 prominent VoMs in the solar

corona-wind literature; all are vacated by being internally
contradicted when attempting CJC. Distributed over nearly
80 yr these studies suggest fluid VoMs need to proceed with
CJC closures, before their solutions become candidates for the
physical assay of the system under study. While clearing CJC
hurdles are necessary for establishing candidate physical
explanations, they should be viewed as plausible, rather than
established candidates for VoM, pending further detailed
kinetic modeling that might be performed that is independent
of the need of a CR.

1.1. Paper Plan

Section 2 clarifies the two parts of the “closure approach”,
and gives brief introductions to the two main ways that fluid,
CRs, have been introduced to plasma problems. Section 3
discusses four approaches to completely justify the closure
approach CJC by “validating” the hypotheses that allowed the
CR to be suggested. Section 4 retrospectively re-examines four
well established coronal wind case studies that span 80 yr in the
literature, using the tests of Section 3. Section 5 inventories the
impact of finding that these well established results are vacated
by their failure of CJC validation. The section is closed by a
brief discussion of the challenges these failures represent for
fulfilling the goals of the Parker Solar Probe and Solar Orbiter
missions. Appendix A lists acronyms used and where they are
first defined. Appendix B describes the construction of Figure
of Merit (FoM) values that screen for unphysically negative
VDFs that can occur at finite Knudsen numbers under all
Closure Rules with a VDF predicate.

2. Closure: Part(I) CR

Plasma closure developments have been strongly shaped by
those first developed for neutral gases. The standard approach
for deriving such closures is to presume that randomization by
collisions occurs over scales λmfp much shorter than any
background gradient scales, L. A common Chapman–Enskog
(CE; Chapman 1916, Enskog 1917) closure calculation is an
expansion about LTE; it assumes a perturbatively small
Knudsen number, ≡λ(w∗)/ L<1, where the mean free
path λ(w∗) used is that of the particle with the thermal
speed w*. A less extensively used Grad N-moment method
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(Grad 1949) uses trial VDF functions dictated by the order N
of the number of moments treated equally in their evolution,
attempting to describe systems with non-perturbatively finite .

Both CE and Grad CRs involve velocity space functional
expansions for the VDFs that are the kinetic basis of the CR.
The physical VDF is always nonnegative; however, these
functional expansions for the VDF are not guaranteed to remain
sufficiently nonnegative as the  increases. For very weak ,
these negative values occur at speeds that are large compared to
the thermal speed; as the grows, this problem moves to lower
speeds, making the approximation to the VDF negative in
regimes that unphysically impact moments retained in the
subsequent fluid equations.

Typically, astrophysical plasmas are characterized by strong
 variations, starting very small near, but below, the stellar
surface and rapidly becoming non-perturbative by 1.05 stellar
radii from the center of the star (Scudder & Karimabadi 2013).
When starting with a LTE CR, the plasma extensions with
altitude rapidly have finite  with ever encroaching velocity
space domains that are negative when using the LTE basis
functions. This type of failure and searching for its occurrence
is part of the vigilance required when using CRs in fluid-based
VoMs in the inner corona region.

Using these CRs with prominently negative VDFs is one
type of hidden problem that can remain undetected if CJC
checking is not performed. Since the physical VDF is
nonnegative definite, the speed regime where this negativity
occurs must be monitored enroute to judging the spatial domain
of success of the closure for a given problem; an approach to
such documentations using FoMs is discussed in Section 3 and
in Appendix B.

2.1. Think Perturbative: Chapman–Enskog (CE)

Considering the small Knudsen ( < 1) regime leads to
thinking of the transport effects as being described as a
perturbative velocity space correction to a lowest order
Maxwellian VDF with uniform temperature and density that
would typify LTE with ( ) = w 0, at finite density. This would
be a spatially uniform state, requiring no EP to enforce quasi-
neutrality. In this regime, the lowest rung of the perturbation
starts with an initial Maxwellian that zeros the collision
operator and is consistent with no gradients driving the kinetic
equation. The gradients allowed in macroscopic variables are
all assumed perturbative relative to the presumed uniform
underlying conditions for the LTE plasma. Closures associated
with the names (Chapman 1916) and (Enskog (1917)) have led
to the frequently used Fourier law form for the isobaric plasma
CR

ˆ · ( ) · ( ) = - b Tq T , 1

associated with the names Spitzer and Braginskii (Spitzer 1962;
Braginskii 1965); this formula has been generalized for
perturbative pressure gradients (Ferziger & Kaper 1972;
Balescu 1988). By the assumptions of their derivations, this
and similar approaches yield perturbative, weak gradient and,
thus, weak  CR. The reference scale L used for the Knudsen
perturbation ordering parameter  in the CE formulation is the
shortest macroscopic scale along the magnetic field of the
solution’s n, P, U profiles (see paragraph preceding Equation
(1.25) Braginskii 1965); in astrophysical plasmas, this will
usually not be the scale of the temperature.

Brief mention should be made of the spillover of transport
arguments from collisional gas dynamics into those for a
plasma. The use above of one number, , to gauge the
allowable size of the velocity space corrections for the entire
random spread of w’s in the VDF incorrectly assumes that the
plasma scattering physics emulates that of the neutral gas. For
neutral gases, λ(w) is virtually independent of the relative
speed of the participants so that the Knudsen number at any
speed in the neutral gas and the velocity space average of it,
á ñ , are virtually interchangeable:

( ) ( )á ñ  w . 2g g

For such gases, small g(w∗) implies small ( ) wg for
essentially all speeds w different from w∗in the velocity
space. Thus, one number can become the small parameter for
the corrections to the VDF at all speeds in the neutral gas. For
convenience, it is taken to be evaluated at the thermal
speed, w∗.
By contrast, small p(w∗) in a plasma does not imply ( ) wp

remains sufficiently small for all random speeds, w, unless
p(w∗) is very small. The issue is that for a plasma

( )

( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

á ñ ¹

*
*

 

 

w

w w
w

w

;

, 3

p p

p p
4

where w∗ is a reference speed in the plasma, usually the
thermal speed or rms thermal speed, depending on the
application. This has the attention grabbing implication that a
perturbative Spitzer–Braginskii calculation for a plasma
requires a much smaller p(w∗)<0.01 (Gurevitch & Isotomin
1979; Gray & Kilkenny 1980; Schoub 1983; Scudder & Olbert
1983) than for a neutral gas, whereg(w∗)<1 usually suffices.
Many who have integrated the plasma fluid description with
Spitzer CR have erred in this gas dynamical way, trusting
Spitzer’s formulation out to regimes where <p(w∗)>;1
(Hartle & Sturrock 1968; Mikic et al. 1999; Cranmer et al. 2007;
Chandran et al. 2011; Bale et al. 2013; van der Holst et al. 2014;
Gombosi et al. 2018).
While Spitzer’s Fourier heat law appears to only depend on

the temperature gradient, this does not mean it would still have
that form if other macroscopic gradients of the solution had
shorter scales than that for Te. The essential reason for this is
that the CE perturbation’s ordering assumes that all important
contributors to intermediate results (like zero current) are
properly reconciled at that order when the final result is stated.
It is the accident of expanding about a Maxwellian in otherwise
homogeneous system with a weak temperature gradient that the
heat flux only depends on LTe (e.g., Equation (35) Scudder &
Olbert 1983).
The scale L in the relevant Knudsen number, c , is

determined by the field aligned logarithmic gradient, or largest
inverse scale (for { }c = n u P, , ) determined by

∣ ˆ · ∣ ( )c= c
- bL ln . 41

Since Lχ can only be determined a posteriori after supposing a
CR and generating moment fluid profiles of the solution, the
validity of the closure approach and its enabled solution are
unknown until a retrospective CJC survey of the solution is
conducted; if successful, this survey should show that the

3
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shortest local Lχ and the variation of c throughout the
solution remain sufficiently small for the CR’s transport
perturbation theory to be convergent.

A source of considerable confusion arises if one attempts to
export CRs across regimes that differ from those where the CR
is CJC verified. As an example, Spitzer and Braginskii results
were derived assuming no background pressure gradient or
external forces were factors in the equilibrium (Spitzer &
Härm 1953). This example demonstrates the context depend-
ence of CJC: when the scales of electron pressure were infinite
and < .01T Spitzer–Härm enjoys CJC; for the same T in
the presence of externally supported astrophysical pressure
gradients Spitzer’s formulation is no longer CJC consistent. In
astrophysical plasmas, like the corona, the density gradient and
thus that of the pressure have scales considerably shorter than
the temperature gradients, making this second circumstance
particularly common.

In the case of Spitzer’s formulation, since 1983, this means
its CJC defense requires that the VoM profiles satisfy

< .01Pe (Gurevitch & Isotomin 1979; Gray & Kilkenny 1980;
Schoub 1983; Scudder & Olbert 1983), where

∣ ˆ · ∣ ( ) ( )lº  * b P wln , 5P e mfpe

where the usual precedence in astrophysics of pressure
gradients than temperature gradients has been assumed. In
Spitzer–Härm where there was no density gradient, the
condition above reduces to an electron temperature Knudsen
number condition.

Such a posterori inventories are the only real measure of the
CE hypotheses, or the physical worthiness of the VoM
solutions attempted. Unfortunately, such analysis is rarely
discussed, and, if done, virtually never published.

Quite commonly, coronal and wind modelers will estimate
the size of Te using the medium’s longer temperature scale LTe

when assessing their “safety” when using Spitzer’s Fourier heat
law for closure (e.g., Bale et al. 2013), ignoring the presence of
the much shorter field aligned LPe. If this error were
compounded by enforcing a condition like < 1Te rather than

< 0.01Te Spitzer’s heat law is invalidated much earlier than
erroneously inferred, contracting the domain of validity of the
VoM modeling, potentially precluding the desired spatial
domain. In the solar wind –L L 5 20T Pe e , (where the smaller
number is near 1 au, and the larger one near the base of the

corona), so that making both errors simultaneously would
misjudge the system’s limiting KTe to be 500–2000 times larger
than it should be based on the mathematical consistency
required by these perturbative transport expansions.

2.2. Think Broadly: Grad’s N-moment Method

The N-moment method is a different transport closure
approach initiated by Grad (1949) and developed for planetary
aeronomy and space applications (Demars & Schunk 1991;
Li 1999; Lie-Svendsen et al. 2001 ). It attempts to alleviate the
perturbative limitation of CE closure by treating N-moments
more equally than just n, U, T that occur in the LTE
Maxwellian distribution. The size of N indexes the depth in
the moment hierarchy included. For solar wind modeling,
N=13 and 16 versions of this approach have been published
that elevate the heat flux tensor elements to one of these “more
equal” moments. In principle, the moments above the
temperature but below N are no longer required to be
perturbative corrections as is presumed in CE.
Achieving closure at level N, given an assumed lowest order

distribution (weighting function) f 0, is accomplished by a rigid
recipe for the underlying form for the VDF that supports the
transport and automatically gives a mathematical closure.
These functions have the form

( )( ( ))
( )

+ F + + + +f n T U D v g v v K v v v Q, , 1 ... ,

6
i i i j ij i j k ijk0

where the Einstein summation convention for repeated indices
is implied. The correction terms in Equation (6) are a series of
completely contracted tensorial terms that make Φ a scalar, but
where the values of the actual tensor elements are combinations
of the moments of the unknown distribution function that are
below the highest moment level retained, N. As N increases,
more multinomial tensor contractions are involved in Φ. The
presence of these high “powers” of v in Φ can ultimately have
consequences that the corrected VDF can become negative if
the associated, spatially varying moments become too large
(see below and Appendix B).
The physical meaning of this approach to mathematical

truncation is not clear, but always leads to a CR of some
complexity and generally stiff differential equations. The hope
is this approach can permit solutions to the transport problem to
be convergent with not such strict requirements on . Intuition
is sparse showing how to pick appropriate N values to afford
suitable approximations for given problems, as is the connec-
tion between N and the magnitude of relief on the bounds for
found with CE. In principle, f0 is free to be chosen but has been
kept Maxwellian or Bi-Maxwellian in the solar wind modeling.
The size of N is a choice that must be high enough to include

the moments thought to be important; from this choice, the
underlying VDF function space implied for the CR is
prescribed given f 0. This rigidity may make any given
truncation still unsuitable if the microphysics to be described
cannot be supported in the space of functions allowed by N and
f 0; this mismatch is also in tension with the physical
requirement that the VDF remain nonnegative. This is a
troublesome aspect of the N-moment approach, since it is well
known that a given finite set of moments can be replicated by
many different distribution functions. Including more moments
for the same f 0 still may not address the underlying needed
behavior required by the Boltzmann equation.

Figure 1. (L) Core-Halo eVDF with same fixed moments [ ] ^n T T q, , ,e e, , as in
(R) set for a 16-moment model of the solar wind. (L) two displaced nearly
elliptic zones of the VDF with different slopes of core-halo distribution, while
(R) is concentric ellipses and gradually skewed.
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The N-moment method is thought to be more flexible than
CE, at the penalty of requiring more moment boundary
conditions than may be experimentally constrained. It is
unknown whether raising N is a more expeditious route to
better solutions for finite  than changing the assumed form
for f 0.

The N=16 expansion about the Maxwellian f 0 shown in
Equation (6) is given explicitly by Equations (A1)–(A3) in
(Demars & Schunk 1991); electron eVDFs between 1 au to
28 Re, were summarized (see Figure 1(k)). For a 1 au observer,
Figure 1 contrasts the published 16-moment electron phase
space portraits (R) with those routinely seen in the solar wind
(L), e.g., Feldman et al. (1975). Both insets have the same
density, heat flux, pressure anisotropy, and temperatures. The
black contours in (L) are those that subtend the extremes of
contours published for the 16-moment eVDF (R). The red
contours (L) highlight the routinely larger velocity space spread
of the phase space in nature versus that allowed by this
particular 16-moment method (R).

The core-halo partial pressure and density partition were not
prescribed by the 16-moment method; thus, there is consider-
able freedom in the core-halo phase space density, even while
matching the heat flux and overall pressure anisotropy. For this
illustration, the core-halo temperature fraction was chosen as
the typical 1 au values for these conditions. However, by
arbitrarily adjusting this ratio, the VDF (L) can be made to look
like the one on the (R). This flexibility demonstrates that the
16-moment method can miss the microstate while connecting
the Knudsen numbers of the flow. In this sense, it is not fully
predictive of underlying effects not far removed from the heat
flux as the last moment retained. Similarly, the pressure
anisotropy in the core-halo phase space could be re-partitioned
differently between core and halo contributions to give further
mismatches between a realizable core-halo VDF and the only
VDF available by this 16-moment method at this location for
the stated f 0.

These juxtaposed eVDF panels highlight the very real
possibility that N-moment closure attempts to reach to higher
Knudsen numbers are not guaranteed to achieve the behavior
that the underlying kinetic equation would have achieved.
Matching theoretical and empirical moments need not imply
the underlying physics of the VDFs and collisions are treated as
the kinetic equation would have shown. Conversely, it is hard
a priori to know what value for N might contain all of the
essential properties of the astrophysical problem.

3. Closure Part (II): CJC

A fluid CR represents a hypothesis. This hypothesis is only
corroborated after validation, CJC, shows that the enabled fluid
solution for the physical system under study meets the
presumed properties that allowed the CR to be derived.

Established fluid paradigms in coronal physics have usually
been argued in the framework of the CR formulated by
Spitzer–Braginskii. Even very recent constructions of VoMs
use this pedigreed approach in the inner heliosphere below
5 Re. Multiple practitioners currently use Spitzer’s heat
conduction CR to model the formation of the corona past the
temperature maximum and across the vast majority of the
wind’s acceleration out to the sonic point (;5 Re), switching to
another heat flux formulation for larger radial distances.

Accordingly, there are numerous results about the plasmas
below the sonic point that are at risk if Spitzer’s CR fails CJC.
There are four, related, part (II), closure validation tests as

part of CJC, that could have been, but were not, made by those
who have used Spitzer’s formulation in coronal and solar
wind VoMs.
(i) The CE framework involves a consistent use of perturbation

theory. Since 1953, it has been known that Spitzer’s formulation
(Spitzer & Härm 1953; Spitzer 1962), as a representative of the
CE type, requires a specific perturbative EP that is already built
into their proposed heat law CR; it has the form

ˆ · ( )

( )








=- 
=

º

 



beE kT

E

E

0.71

0.355

, 7

e

T

D

e

where Dreicer’s electric field, ED, defined by l ºeE kT2D emfp

and lmfp is the coulomb mean free path for the thermal speed
electron. This electric field was required to preempt parallel
thermo-electrical currents that otherwise flow in the presence of
the proposed heat flow SH (Spitzer & Härm 1953; Spitzer
1962). The second form in Equation (7) is the original SH
relationship scaled by Dreicer’s electric field followed by using
the definition of the electron temperature’s Knudsen number.
The plasma pressure profile of the VoM solution implies the

presence of an EP in the modeled fluid solution for the plasma;
if the profile were isothermal, such pressure gradients support
the Pannekoek–Rosseland parallel electric field required for
quasi-neutrality and equal scale heights for electrons and
protons in stellar atmospheres (see Pannekoek 1922; Rosseland
1924). From conservation laws, EP more generally has a lower
limit (Scudder 2019a) based on the Generalized Ohm’s Law
(Rossi & Olbert 1970) of

( )    2, 8P ,e

where, by its definition

( )  º +   9P n T, , ,e e

and

ˆ · ( ) l= -  b lnP. 10P e, mfpe

If, as is common, the density and temperature gradients are
aligned, the magnitude ofPe always exceeds that ofTe. Since
the density gradients are usually steeper than those of Te even
when their senses are opposed, as occurs just above the
photosphere, one generally finds for astrophysical profiles that

∣ ∣ ∣ ∣ ( ) > 0.71 . 11P T, ,e e

As shown below with the relatively recent solutions (Cranmer
et al. 2007; Chandran et al. 2011) describing innermost regions
with T and n anticorrelated, Equation (11) is nonetheless
satisfied (see Figure 4).
Any VoM profile obtained with Spitzer closure that satisfies

Equation (11) has used Spitzer’s closure in an inappropriately
inhomogeneous system. Any time after 1953, the use of
Spitzer’s closure for a plasma could have been screened
a posteriori for inappropriate use by contrasting the two profiles
in Equation (11). We show below that the conclusions of each
of our four studies are invalidated by this simple test.
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(ii) A subtler corollary of consistency achieved consensus
between 1979 and 1983 (Gurevitch & Isotomin 1979; Gray &
Kilkenny 1980; Schoub 1983; Scudder & Olbert 1983). This
test results from establishing the conditions for convergence of
the perturbation expansion used when extracting the Spitzer–
Braginskii Fourier heat law. Since this time, it has been widely
agreed in the plasma literature that the Knudsen number of the
Spitzer expansion must be exceedingly small for the Fourier
heat law to be CJC defensible (for an accessible derivation see
Scudder & Karimabadi 2013). Specifically, this condition is
that

∣ ∣ ( )  0.01, 12Pe

implying that the mean free path for collisions must be less
than 1/100th of the scale of the electron pressure gradient. For
this reason, the Spitzer formulation is hardly ever physically
appropriate for astrophysical plasmas where ( ) O 1Pe are
commonly expected (Scudder & Olbert 1983; Scudder &
Karimabadi 2013) for r>1.05 R*, where R* is the nominal
stellar radius.

After formulating a CR (part I) that enables a fluid solution
to be found, it is then possible to determine retrospectively Pe

and Te and compare them with the two mathematical
perturbation requirements above for consistency with the
Spitzer–Braginskii heat law.

Below, the condition of Equation (12) is also shown to be
contradicted by all four of our VoM case studies. The existence
of this second test predated only the last two VoMs reviewed
here. Nonetheless, all VoM efforts discussed below could have
been contradicted using the careful statements of SH in their
1953 paper 66 yr ago.

(iii) VDF�0. Either closure approach can fail by predicting
negative values for the VDF within the speed domain required
for the moments used Scudder & Karimabadi (2013).

The N-moment form of Equation (6) admits the possibility
that the assumed, underlying VDF becomes unphysically
negative. This is also possible with finite Te with the CE
expansion whose underlying VDF has a similar form:

( ( )) + vf f g10 , with a multiplicative factor + =g1
( ( ))q a b- + x x1 cosT

4 6
e , where x=w/w∗(p 243 Hazeltine

& Waelbroeck 1998). As Te increases, the speed-dependent
corrections can potentially overpower unity making the approxi-
mated VDF unphysically negative, just as the tensorial contrac-
tions can do the same for the N-moment VDF.

The speed domain of this unphysical behavior moves toward
lower speeds as T increases, eventually invalidating the
structure of the VDF required for accurate moments used in
the fluid conservation equations. These circumstances would
remain undetected without a posteriori inspection of the
occurrence of the negativity of the VDF for any VoM solutions
generated with either Spitzer or the N-moment closures.

A reasonable FoM for the importance of f<0 can be
defined as follows. The evaluation is numerically performed for
all moments used in the subsequent fluid equations and spaced
at reasonable spatial increments to resolve the strong gradients
of the moment solutions implied by the CR. The FoM(x) at x
for a given spatial location is the smallest FoM found when
inventorying all fluid moments required for the solution at the
given spatial location using Equation (20). If the tabulated
moment has no negative VDF values the moment FoM=1; as
the importance of VDF<0 grows (as weighted by the phase
space volumes they represent) the FoM decreases from unity.

Different moments whose integrands maximize at larger
thermal speeds have increased numerical sensitivities to
decreasing the FoM and all must be checked. Thus, the heat
flux would be impacted at weaker Knudsen numbers than the
pressure tensor, or the momentum. (see Appendix B for an
approach to computing FoM.)
Neither the CE nor Grad’s N-moment CRs are a panacea for

the difficulties of finite plasmas involved in the corona below
the sonic point. The nonnegativity check should be performed
before making physical interpretations. This concern is
especially important in regimes where the relevant Knudsen
number is becoming non-perturbative and/or changing very
rapidly, or in locales where local corroboration of the VDF
underlying the closure may not be available for the foreseeable
future. In the vicinity of 1.05–3 Re, this problem is expected to
be especially severe for the foreseeable future.
(iv) VDF;VDFobs A reasonable expectation is to extend

the N-moment method or CE radial domains to where there is
knowledge of the ambient VDF to ascertain how well the
measured VDF is anticipated by the assumed closure. (This
might be done using the innermost petals of Parker Solar
Probe or Solar Orbiter trajectories.) At the radial location
where boundary conditions on the N-moments are imposed, a
minimal consistency check would be to compare the
eVDFtheory implied by the moment method and its closure
technique, with eVDFobs as measured in situ, but nearby. As an
example, throughout the presently measured solar wind the
eVDF is known to be nonthermal of the core-halo or kappa
types with occasional strahl deformations. If the N-moment
method at its closest point to the accessible solar wind
observations cannot recover this type of eVDF, this is an
indication of excessive rigidity.
As these are steady-state solutions outside the critical point, a

boundary condition on the fluid moments could be at 1 au as
considered by Demars and Schunk, in Figure 1(k).
Figure 1 contrasts 1 au eVDF portraits from observations and

theory when the theory is initialized at 1 au. The (L) insets from
observables produces the same moments with a bifurcated
core-halo shape, while the (R) inset from 16-moment theory
suggests an undifferentiated elliptical shape with skewness.
Despite the 16-moment method’s attempt to include more
moment structure at larger Knudsen numbers, it still does so
under the controlling influence of the central Maxwellian shape
assumed for f 0. The bifurcated observed shape seen in the core-
halo data of (L) is a key recovery of the new approach for
electron solar wind transport Scudder (2019b).
Like the fluid equations based on Spitzer closure the

N-moment method determines spatial and temporal variations
of these moments as solutions of a larger set of coupled partial
differential equations. The leverage of the approach (its
closure) exploits a supposition that a theoretical velocity
distribution function (Equation (6)) can adequately support the
desired evolution of the moments. While it is obvious that the
moments do not uniquely characterize the supporting velocity
space in a 1–1 manner, it should also be clear that the value of
the N-moment method could be inventoried by how well its
mathematically dictated form replicates the observed VDF seen
for the systems being analyzed. There is every possibility that
the method of moments with correct moment boundary
conditions will not correctly predict the system’s eVDF
behavior away from the boundary; this is unavoidably correct
if the moment boundary conditions imply the underlying
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assumed VDF do not replicate the observed VDF precisely
where the boundary conditions are imposed. Although the
boundary conditions imposed may agree with observed
moments, the prescribed VDF required by the N-moment
method may be too rigid to agree favorably with observed
VDF at the same boundary.

Another effect of the non-uniqueness of the supported VDF
for a given set of moments is that moment “equivalent” VDFs
can have markedly different collision integrals, which may or
may not be important for the physical predictions of the
N-moment approach. An important example of this circum-
stance is the thermal force that observationally does not
get smaller with lower collisionality (Scudder 2019a) and is
important in zero current regulation of the steady-state wind,
but determined by the low-energy distortions of the eVDF that
attend the flow of heat.

4. Coronal Case Studies: CJC

Four case studies are now examined retrospectively where
CRs used without CJC have strongly influenced currently held
paradigms of coronal solar wind physics. The first is about the
coronal “heating” problem. The second is about the sufficiency
of Parker’s thermal wind model (Parker 1958) to explain the
observed solar wind. The third and fourth examples showcase
the status of VoM modeling for post Hartle–Sturrock (HS;
Hartle & Sturrock 1968) wind models that are nearly
contemporaneous with this writing. By picking studies
sprinkled over the 80 yr development of this field, the
generality, persistence, and misunderstandings of the closure
problem are highlighted, and the need becomes clear for
demanding CJC validation for fluid modeling of VoMs in the
future.

4.1. (i) The Interpretation of Non-monotonic T(r)

Just after spectroscopic inferences of the presence of high
coronal temperatures were made (Edlén 1937; Grotrian 1939),
Alfvén published (Alfvèn 1941) the inferred non-monotonic
temperature profile of the corona shown in Figure 2–(L). This
inferred temperature profile was based on Alfvén’s model of
force balance and observed electron density profiles, but did
not rely on a closure postulate. Many profiles since this time
have shown similar non-monotonic profiles (see, e.g., the suite
collected in Lemaire & Stegen 2016). Panels (L)–(M)–(R) of
Figure 2 show radial profiles of temperature, pressure, and
Knudsen numbers (P andT ) and mean free path information
versus radius under two different assumptions: red (ignoring)
blue (modeling) average magnetic effects from the same
density observations (Alfvèn 1941).

From their earliest reports, these and similar data have been
summarized as exhibiting the “coronal heating problem.” The
data’s characterization comes from the argument: for the non-
monotonic profile to be steady and consistent with thermal
conduction, the observational profile requires heat to be
deposited at the temperature maximum, rm.... It is difficult to
find articles in the present decade’s coronal literature that do
not refer to this characterization as established fact. Multiple
research programs are presently focused on VoMs designed to
produce this surmised mode of energy deposition.

This type of argument requires a remote knowledge of∇·q,
a model-independent term in the plasma energy equation. The
argument appears to assume that the plasma heat flow at

coronal temperatures and densities obeys a Fourier’s law form,
just like in neutral gases:

( ) ( )k= - q T T. 13

When Alfvén’s profile was first exhibited, this Fourier law had
not been derived for a plasma, making this type of argument
one probably based on an adopted closure, since Chapman and
Cowling had recently, in 1939, succeeded in deriving just such
a relation for neutral gases (Chapman & Cowling 1939).
Since the heat flux enters the energy equation via the ∇·q,

its sign determines whether it heats or cools the plasma;
evaluating this divergence at the observed maximum temper-
ature (with attention to the functional dependence of the
diffusivity in Equation (13)) yields:
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With ∣¶ ¶ =T r 0rm and the negative curvature of T at the
inverted temperature maximum, the sign of the divergence is
indeed positive at rm.
While the mathematics for the inequality in Equation (14) is

correct, its physical interpretation is entirely contingent on the
physical justification of the assumed heat law’s form in
Equation (13) at rm. As an example, had the heat flux CR
depended on the density gradient as well as the temperature’s,
(Scudder & Olbert 1983), the calculus would not have
supported the heating conclusion summarized above.
The Spitzer–Härm 1953 derivation (Spitzer & Härm 1953)

of a Fourier heat law for a collisional plasma seemed to bolster
its use to interpret the coronal temperature profile. Braginskii’s
1965 announcement of a similar form (Braginskii 1965)
seemed to cement the rationale for using such a form and the
heating inference summarized above.

Figure 2. Alfvén’s inference of the non-monotonic temperature profile of the
solar corona (Alfvèn 1941). Models I and II are with and without models of
assumed magnetic effects. (L): temperature; (M): pressure; (R): pressure
Knudsen number, P, and mean free path over radius: l rmfp , based on
densities used to extract temperature profiles. Density observations most
accurate below 5 Re (vertical green dotted line). Note the widespread violation
of Spitzer’s maximum allowed < 0.01P . Also < T Pe e implies Spitzer’s
thermal force electric field is exceeded by the pressure gradients.
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However, tucked in the 1953 SH derivation there is the
explicit zero current condition, summarized as Equation (7)
above, and the assumption that the Fourier law was a
perturbative result in a nearly isobaric background plasma.
The radius of convergence of this derivation was established by
1980, Equation (12). Until the plasma profile is shown to be at
least consistent with both of these prerequisites, it is
inconsistent to pursue consequences of Spitzer’s heat law form
for its implications about the temperature maximum.

Referring to Figure 2(R), we can evaluate whether Spitzer’s
heat law form is appropriate for the interpretations ascribed to
this data. Under both of Alfvén’s red or blue assumptions

∣ ∣ ∣ ∣ ( )́ ́>  , 15P TAlfven Alfvene e

which implies that Spitzer’ zero current condition embedded in
his heat diffusivity and Fourier law form is contradicted. Not
unexpectedly, but clearly evident in the Alfvén profiles is the
fact that ∣ ∣ > 0.01Pe , showing that Spitzer–Braginskii pertur-
bative closure does not converge for the Knudsen number
regime at rm.

Neither of these lines of reasoning were available to Alfvén.
However, since SH’s 1953 paper, the original characterization
about the nature and cause of the non-monotonic temperature
profile is inappropriate. Where the energy must be supplied
is clearly no longer established by this argument, despite the
number of published VoMs being designed to support the original,
but incorrect, inference of the maintenance of the temperature
maximum.

The English language provides different ways to refer to the
non-monotonic temperature puzzle of the corona: perhaps the
least warranted description is that it reflects heating; descrip-
tively, it is a temperature inversion, Scudder (1992). To
advance an explanation for the temperature inversion of the
corona requires a deeper understanding of the physics of these
layers than to interpolate that it has been heated there.

4.2. (ii) Thermally Driven Winds: Two-fluid Interpretation

A different variant of this same kind of imprecision occurred
when a two-fluid thermal model of the coronal expansion was
published in 1968 by Hartle and Sturrock, (HS). Based on
coulomb collision scattering physics and the then recent
Braginskii transport equations (Braginskii 1965), a two-fluid
description of the solar wind was numerically generated from
equations closed using Spitzer–Braginskii Fourier heat laws
particularized for protons and electrons. The coupling between
the two scalar pressure fluids retained a one-fluid momentum
equation but retained separate electron and ion energy
equations with collisional energy exchange rates (modeled as
between Maxwellian VDFs) as systemized in Braginskii’s
influential paper (Braginskii 1965).

Upon integration from accepted coronal base conditions,
the model generated a supersonic wind but could not produce
the highest 1 au solar wind speeds known at that time, nor the
proper partition between the electron and ion temperatures, nor
the observed size of the 1 au heat flux.

After presenting their new solar wind solution and compar-
ing it with available 1 au data, HS vacated their own thermal
model for the wind in the same paper Hartle & Sturrock
(1968), suggesting that the model-data contrasts implied their
thermal model lacked essential missing physical ingredients
of the corona/wind problem. They speculated on the likely

candidates for additional mechanisms, suggesting the damping
of hydromagnetic waves or wave pressure acceleration effects
might explain the exhibited data-model deficits.
Constructed in 1966–1967, the HS model had incorporated

results of Braginskii’s 1965 paper and Spitzer’s 1953
derivation of a plasma heat law of the form in Equation (13).
There is, however, no mention in the HS paper about the
condition above of Equation (7) that occurs as Equation (25) in
SH. The HS solution could have been evaluated a posteriori by
testing their profile’s compatibility with the relation SH had
assumed, viz

( )= - 0.71 . 16P
SH

T
SH

e e

A quick perusal of the Knudsen profiles in Figure 3(R)
illustrates that Equation (16) is contradicted since > P Te e

everywhere within the HS two-fluid solution. When writing
their paper, HS could have made use of this point to understand
the fundamental problem: their solution used the Spitzer
closure beyond the domain where the electric field was given
by Equation (7) found necessary by SH to accompany their
perturbative Fourier heat law. Alternately, violating this
condition implies the CR of SH had been used inconsistently
in gradients that were not perturbative.
Although HS discussed the strong variability of the collision

frequency across their solution, they concluded that their fluid
framework was reasonably secure well beyond the orbit of
earth. HS did not examine a posteriori the variation of their
solution’s pressure Knudsen number, ( ) rP , shown in
Figure 3(R) computed for this paper. This figure also shows
that P exceeded the horizontal red dashed line known since
1983 to be the upper limit for a convergent perturbation
expansion for Spitzer’s heat law.
Figure 3 shows that the HS thermal wind solution was closed

inappropriately for the entire radial domain for which their solar
wind solution was determined, a fact HS could have known about;
in addition, but unknown to them, they had inappropriately used

Figure 3. Left panel: Te, Pe, nE, vs. r in red, moss, blue. Right panel: variation
for HS solar wind solution (1968) of Knudsen numbers for Pe, ne, Te, together
with mean free path over radius in red, green, blue, and black. Note: solution
characterized by > P T and all values exceed the value at the horizontal
dashed red line which is the upper bound (Equation (12)) for valid Spitzer–
Braginskii closure. Accordingly, the heat law closure is shown to have been
invalid throughout the solution!
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the Fourier heat law when ( ) > r .01Pe that was outside its
subsequently derived radius of convergence.

Careful study of SH could have warned all researchers since
1969 that the Hartle–Sturrock model data confrontation and
conclusions were flawed. The results in 1983 should have
sounded a secondary warning that the results of HS did not
have the leverage ascribed to it in nearly every solar wind
theoretical paper since that time. This situation shows a
research program reticent to winnow its established theoretical
basis in the presence of new research as embodied in the
Spitzer-Härm work and the results about convergence of
Spitzer’s CR solidified in 1983.

Curiously, HS had argued (p 1164) that their heat flow
closure was satisfactory out to the 1 au locale of model data
comparisons, since they felt it was only in question beyond
5 au, where the model’s heat flux approximated the “saturated”
value. The saturated form of the Fourier heat law corresponds

to temperature Knudsen number ( ) O 2 3T . Their argument
of closure sufficiency appears to have presumed the size of T
alone ensured the viability of the Fourier closure. However, the
spirit of the CE approach that allows the heat law derivation
clearly supposes that all Knudsen numbers associated with
gradients from the left-hand side of the kinetic equation should
be perturbatively small; hence, the condition for the expansion
is clearly on the pressure Knudsen number which exceeds that
of Te, ne and ∣ ∣U , since

∣ ∣ ∣ ∣
∣ ∣( ) ( ) 

º +
  

  
 1 ; 1, 17

P n T

n

because the temperature scales are so much larger than the
density everywhere.
Since 1968, HS’s conclusion (Hartle & Sturrock 1968)

that new effects are required beyond the treatment of the
“thermally” driven wind should also have been found logically
indefensible, since the closures HS used to provide model-data
disagreements were inconsistent with the premises of the
Spitzer CR used at all radii.
This retrospective also implies that HS’s simulation and 1 au

data-model deficit did not logically comment on the viability of
a physical, defensibly closed, thermal wind model recovering
the 1 au observations. In the intervening time, evidence to
support the existence of alternate thermal solutions has been
presented for hybrid-kinetic solar wind solutions that circum-
vent closure requirements and improve the description of the
coulomb physics; these have produced high-speed winds with
observed properties (e.g., Olbert 1983; Landi & Pantellini 2003)
without including wave phenomena that HS surmised were
necessary for this purpose. Even exospheric solutions that are
more properly closed with respect to the size and effects of the
necessary EP also show promise in this direction, e.g.,
Maksimovic et al. (1997).
As of this writing, HS’s 1968 conclusions recur frequently in

the literature to justify undertaking many investigations
exploring additions to the coronal-wind description beyond
that contained in the thermal model. Two of these will be
briefly examined next; they include direct acceleration by
waves and heating by turbulence.

4.3. (iii) Wave-driven Winds: One-fluid Interpretation

An example of a 21st century coronal solar wind modeling
addressing the HS surmise, is found in the extensive one-fluid
model (Cranmer et al. 2007) that included non-WKB wave
heating, wave pressure driving, and models of turbulent
cascades. This effort was said to be a “self consistent
treatment”; nonetheless, it contained an inconsistent moment
closure.
Apart from addressing new effects, this solution was only

made possible by a closure interpolation arranged to be
identical with Spitzer and Braginskii below 5 Re and smoothly
transitioning to one suggested by Hollweg (Hollweg 1974)
beyond r>5 Re. This merging of the two heat law forms left
the Spitzer Fourier law form dominant below 5 Re. These pre-
existing closures were used without modifications that might
have been necessitated by the introduction of new electro-
dynamic processes in the modeling that impact maintenance of
zero current. This CR was used, without retro-validation in the
spirit of CJC.
Self consistency would ordinarily imply “...not having parts

or aspects which are in conflict with each other..” The HS

Figure 4. Profiles from recent solar wind solutions (Chandran et al. 2011;
Cranmer et al. 2007) of ( )VT e , P, P

2011, P
2007, in orange, green, blue, red,

respectively. The horizontal dotted red line is upper bound on P where
Spitzer–Braginskii is valid. The vertical black dotted line where heat
conduction bridging formula converts from SH to Hollweg saturated form.
The solution’s inferred temperature maximum is indicated by the orange
vertical dotted line; it is well within the domain where SH closure dominates
the bridging formula where it is assumed valid, but is not. This region is also
where the wind is predominantly accelerated and has been modeled in both
solutions as if SH closure were appropriate, which it is not. This may be seen
by the red dotted horizontal line at 0.01, which is the upper-limit Knudsen
number allowed for a convergent SH closure. Both solutions fail this test. The
orange-cyan curve for ∣ ∣T shows a cusp at the location of the solution’s
temperature minimax. Data from the solutions analyzed were digitally shared
with the author by the principal authors of each study (B. A. Chandran 2012,
private communication; S. R. Cranmer 2012, private communication).
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thermal solution above was shown a posteriori to be self
contradictory of its Spitzer CR. Has this interpolating approach
to the heat flow closure in this 21st century coronal-wind model
overcome this difficulty when using Spitzer CR in the inner
region? Does using essentially the same CR as used by HS get
any more “self consistent” here when used in the 21st century
VoM with an added spectrum of new mechanisms superposed?

The new processes involved in this VoM were introduced for
their impact on the solutions properties. In principle, many
things could change for the plasma modeled as a fluid. The
question of force balance and maintenance of zero current in
either limiting form of the interpolating closure, were not
considered when bridging between the two existing closures.

For this 21st century coronal-wind modeling exercise,
Figure 4 shows that the proffered VoM with Spitzer CR
violated (i) Spitzer’s choice of parallel electric field since its

( ) ( )> r rP T
2007 2007 , and (ii) violates the convergence require-

ment of Spitzer ( ) > r 0.01P
2007 , given by the red dotted line

established in 1983. The vertical black dots denote where this
2007 modeler chose to make a cross-over (5 Re) between
Spitzer dominated (below) and Hollweg saturated heat flows
(above) for this self-consistent treatment.

For reference, the orange vertical dotted line indicates the
location of the temperature maximum of this VoM solution.
Among other things, this solution perpetuates Spitzer’s
suggestion that the heat goes down temperature gradients well
up into the regime where the form of the heat law is itself
suspect. In turn, this choice implies the transition region is a
significant energy drain for the plasma near the temperature
maximum, impacting the energetics of its formation. This is
just one of the ways that the incorrectness of the closure can
circumscribe the remaining requirements that the VoM must
produce to agree with observations. The accuracy of the CR
used will and can influence the perceived importance of any
given VoM.

Since the solar wind’s acceleration is largely completed by
5–10 Re this solution is attempting VoM modeling of the
wind’s acceleration, while simultaneously closing the fluid
equations with a broken description of heat flow in this inner
acceleration region  < « <h R r R4 5 . It is hard to
understand such modeling as self consistent, since without a
physically defensible closure truncation, there is no viable, zero
current, fluid plasma description with which to study new
effects. In addition inaccuracies of the divergence of q that arise
from the broken closure also impact the efficacy with which
heat is converted to flow energy and the perceived need for
additions of energy in other forms.

The closure, for all of its new effects, is inconsistent with
zero current at the Generalized Ohm’s Law level and steady
state and is thus vacated using the 1953 framework of the SH
paper. As expected, the size of ∣ ∣Pe in this 2007 VoM solution
exceeds (almost everywhere) Spitzer’s allowed upper limit
of 0.01, known since 1983. On both accounts this “self
consistent” work with over 340 citations, actually has no
physically defensible conclusions.

4.4. (iv) Wave-driven Winds: Two-fluid Interpretation

Another 21st century two-fluid solar wind model has
examined VoM modeling including ion kinetic effects and
low-frequency non-WKB wave-driven winds, including the
interdiction of proton anisotropy evolution (Chandran et al.
2011). It has attempted to include additional fluid averages of

kinetic effects into the two-fluid equations, so that their
influence on the subsequent evolution of the wind may be
evaluated. In this sense, this modeling might be considered as a
recent attempt to improve the 43 yr old HS two-fluid solution
(Hartle & Sturrock 1968), by adding new effects HS had
speculated were necessary. Compatibility with steady-state
quasi-neutrality and zero parallel current were enforced by
inserting = =n n ne i and = =U U Ue i into their initially two-
fluid treatment of the plasma fluid system of equations.
Coulomb collisional coupling of energy was retained based
on Maxwellian ions and electrons; ion energy equation was
closed with a fourth moment heat law CR (Snyder et al. 1997)
assuming that the ions were nearly bi-Maxwellian in the drift
frame. A postulated high-frequency wave particle scattering
process was presumed to moderate the ion pressure anisotropy.
The electron fluid closure incorporated a heat law form
virtually identical with the bridging formula for the electron
heat law used in the modeling of case III above (Cranmer et al.
2007). The thermal force was not included in the respective
energy equations.
An a posteriori analysis of this VoM is displayed by the

curve labeled P
2011, shown with dark blue curve in Figure 4.

Because the heat-law closure adopted for electrons was
intended to reduce to Spitzer–Braginskii to the left of the
vertical black dotted line in this figure, this domain of the
solution is fairly assessed a posteriori by requiring the Knudsen
number to be below the accepted maximum size 0.01 allowed
for convergence of the Spitzer transport recipe. As shown in
this figure, the entire inner heliospheric solution (dark blue
curve) is improperly closed in this manner. The assumptions
for the heat conduction recipe are contradicted beyond

 - >r R 1 0.05, with Knudsen numbers exceeding the
maximum allowed for Spitzer indicated by the horizontal red
dashed line.
With an unphysical underlying closure across the entire inner

heliosphere where the wind is principally accelerated, what is
the take-away from this VoM effort that includes new physics?
Are the waves included shown to be essential or accidental? By
improving agreement with data does this fluid solution verify
the wave-driven VoM wind model? Because (i) the closure is
required for the fluid description integration and (ii) is
demonstrably broken, this VoM unfortunately does not allow
an unassailable, or even likely, physical VoM result. None-
theless, this work is widely emulated and often cited for its
closure approach.

5. Discussion: Solar Probe Assays

5.1. VoMs and Closure Headaches

At present, all published VoMs are susceptible to being
invalidated because they represent only the outcomes of a
provisional hypothesized CR, with no CJC control of its
validity. As discussed in the two most recent case studies, CRs
are increasingly implemented as hybrids of CRs thought to be
appropriate in different radial regimes of some other plasma
fluid problem. Among the difficulties of these and other
approaches (e.g., Breech et al. 2009; Cranmer et al. 2009) is the
omission of the thermal force physics Scudder (2019a) required
for two-fluid descriptions with separate energy equations. More
generally, the total absence of a posteriori CJC cross checking
of the closure hypotheses using the solution produced gives no
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assurances that the VoMs produced are consistent descriptions
of reality.

The conclusions generated by such unproofed closures have
demonstrably deflected coronal research directions for multiple
decades because their physical consistency was neither
challenged (i) before their conclusions were accepted for
publication, nor (ii) when new knowledge gave retrospective
clarity for previously made pivotal assumptions. Unchallenged,
they are presently ensconced as deeply held, but still
inappropriate, rationales for new coronal solar wind interpreta-
tions by a new generation of researchers. The long-standing,
but partially forgotten, thermal force physics is only now being
realized to be a significant part of the required VoM modeling
for the present coronal and solar wind challenges.

This paper has emphasized the idea that the CR is only the
first part of the closure approach, and by itself can only give a
conjectural guidance for what the approximate fluid behavior
of the VoM could be. Given the nonlinearity of the equations
involved and the strong gradients involved in the corona and
inner solar wind, the validation phase, CJC, of the “closure
process” is the needed screen for the very real situation that the
CR alone has produced results with no self-consistent physical
basis. This inconsistency may include being “prominently
supported” by VDFs with negative probabilities in them. When
this happens, the rigorous fluid equations are conserving
particles while anti-particles implement zero current and
conservation of energy. Appendix B of this paper shows an
efficient way to screen fluid solutions for the occurrence of
significant negative VDF behavior. In the present epoch, the
neglect of including the thermal force when explaining
differential heating signatures is a serious criticism of the
relevance of a proposed VoM, since the thermal force and heat
flux are a tandem (Fitzpatrick 2014; Scudder 2019a) that
promote exchange of energy consequences (Scudder 2019a).

From this precaution, it is clear that another test for a
proposed VoM plasma fluid closure recipe is to ascertain the
specification of its underlying VDF predicate. Ad hoc moment
closure recipes have no supporting VDF formulation that
implements the CR recipe assumed. As an example, the
interpolating CR between Spitzer and Hollweg limiting forms
(in studies 3 and 4 discussed above) never declares how the
VDF transitions in space to smoothly produce the heat flux CR
interpolations supposed. Studies that include empirical heat
flux profiles (Breech et al. 2009; Cranmer et al. 2009 to avoid
the problems of a theoretical closure have this same difficulty.
By contrast, CE and N-Moment closures have clearly stated
underlying VDFs that are their spatially dependent connections
to the kinetic equation and the basis of their spatially
dependent, nonnegative VDF screens in Appendix B. VoMs
using CRs without a specification of the VDF predicate
preclude tests for negative VDF allowed by the FoMs of
Appendix B. Such VoMs have a cloud of ambiguity over their
conclusions for this reason, if for no other.

The internal contradiction of a given CR is clearly possible
when used for a different physical system, despite the very
same CR having been CJC validated for a different system. The
CJC approach emphasizes the validation part (ii) of the closure
treatment involves tests on the fluid solution for the specific
plasma system under study; it cannot be validated globally in
the CJC sense by illustrating some other plasma system where
the CR satisfied CJC scrutiny. The CR must be validated as a
function of space across the entire volume of the VoM, since it

may be viable only in part of that volume. To do so requires the
fluid solutions enabled as a function of space and the
reconstruction of the underlying VDF and the methods of
Appendix B. Without these CJC tests, the VoM may be
interpreted as representative of the entire volume when it is not.
As widely and as long as it has been known that the Spitzer-

Braginksii CR has a severe convergence requirement, there
has been virtually no attention paid to it in the coronal and
solar wind literature. These CRs are the choice of almost
all who would model the solar corona and wind between
1<r<5 Re, but apparently justification of this choice is not
worth any ink! As discussed above, N-moment methods have
been tried with limited successes; their implied VDF functional
forms determined by the moment solutions need checking for
nonnegativity. Although less frequently in use, the N-moment
methods still require an analogous two stages for their closures:
CR followed by validation that has never been implemented.
The currently used CR “only” approaches (without CJC)

bear a very strong resemblance to an attitude explained to
the author many years ago (M. L. Goldstein 1980, private
communication), called WECIDO. That is to say, the CR used
is excused by the absence of alternatives: “..What Else Could I
Do (WECIDO)...” It is a bad trade, since with such a point of
view all responsibility for the precision of the closure is
avoided, the simpler fluid problem is now closed by
assumption, and the implied fluid solutions can be exhibited;
but what do they mean? The adopted CR has made
suppositions; the solutions produced with this adopted CR
can be retroactively analyzed, as advocated above. In the
present environment, it should not be surprising that this is
not done.
The WECIDO’ers go on to interpret their CR enabled fluid

solutions as if they must have physical implications. And, if the
fluid solutions do not explain observations, they must imply that
the VoM being tested is intrinsically incomplete physically, a
haunting echo of the incorrect self-interpretation by HS. Or, if
they do explain observations the mechanism of the VoM is
supported. Both conclusions are logically indefensible.
WECIDO logrolling is another prevalent pattern. Adopting a

previously published part (I) CR appears to earn a “community
pass” that its fluid solutions are publishable VoM efforts—even
when the recourse to that Spitzer CR is long since known to be
a WECIDO excuse. With a wide group of practitioners
presently adopting the same CR (as in case studies 3 and 4
above) without attempting validation, there seems to be a
wagon circling defense of the indefensible (Mikic et al. 1999;
Usmanov & Goldstein 2006; Cranmer et al. 2007; van der
Holst et al. 2010; Chandran et al. 2011; Manchester et al. 2012;
van der Holst et al. 2014; Gombosi et al. 2018; Réville et al.
2018). In 2018 these “thermodynamic” VoMs were reviewed
with the assay: While this “...“thermodynamic” approach
sidesteps [sic!] the underlying physics of coronal heating and
solar wind acceleration it provides an adequate mathematical
framework [sic!] to describe coronal processes in a way that is
consistent [sic!] with solar dynamical processes” Gombosi
et al. (2018); emphasis added. WECIDO is still alive, well and
applauded. We are now more than 50 yr past the learning
period for two-fluid coronal VoMs, and something better than a
verbally adroit form of WECIDO is required to make coronal
and solar wind VoMs useful for advancing the physics of these
layers.
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5.2. Avenues for Closure Validation

Two clear a posteriori profile tests have been suggested that
would pre-screen (CJC) fluid plasma VoM attempts using
Spitzer–Braginskii closure. By our retrospective sample, it
seems hard to foresee that such closures will produce
physically defensible VoM demonstrations inside 5–10 Re. A
third a posteriori test has been suggested for CE class and Grad
N-moment closure approaches involving assays for positivity
of underlying VDFs. A fourth avenue was suggested using the
radial domain of observations overlapping the radial domain of
the VoM. A fifth screen involving the presence of the thermal
force was argued to be a general requirement for the VoMs that
require different energy equations for plasma species.

When using new variants of either CE or N-moment closures,
a posteriori FoM checks should be used to demonstrate that the
underlying VDF of the closure remains “substantially” nonnega-
tive throughout the velocity space involved and across the spatial
domain of the VoM attempted. This precaution is designed to
preclude moment profiles based on conservation of particles using
anti-particles (VDF < 0) in the book keeping, or zero current with
positrons posing as electrons, (anti-protons as protons) or both in
any other moment such as the heat flux being algebraically
misinventoried in the presence of VDF <0. Appendix B develops
a systematic way to formulate a FoM for the occurrence of this
velocity space defect underneath the fluid solutions; unphysical
fluid behavior determined by the CR may otherwise be taken as
physical.

At the same time, this approach is cognizant of the fact that
all CE and N-Moment VDFs eventually always go negative,
but usually do so at very high speeds for perturbative Knudsen
numbers where they make negligible contributions to the
moments. Such limits provide a nice check on the diagnosis of
FoMs for such negativity. With the finite Knudsen numbers
seen in the solar wind, the underlying eVDF supporting
Spitzer’s closure is negative within the speed range that
impacts the numerically convergent heat flux and pressure
anisotropy.

5.3. Parker Solar Probe and Solar Orbiter

Those seeking the prized VoM for the coronal temperature
inversion or the solar wind’s range of accelerations should first
prepare a CJC specific to their proposed VoM. Particularly
demanding will be its demonstration that specialized VoM effects
that interact preferentially with ions rather than electrons (or
vice versa) are analyzed as part of the new closure, and that force
balance is demonstrably achieved in the ion frame, under the new
CR. In this regard, the modifications of the unavoidable thermal
force description must also be included. The consistency
requirements for a viable closure approach for 1<r<5 Re
and the successful VoM explanation would appear more arduous
than any performed to date and certainly will not be believably
performed using weak gradient Spitzer–Braginskii closures. This
suggests that fluid plasma VoMs in the Parker Solar Probe and
Solar Orbiter era will probably require different frameworks from
those closely patterned after regimes with successful neutral gas
transport descriptions that are currently in use.
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Appendix A
Acronyms and First Use

Shown in alphabetical order are the acronymns used that are
most common in the literature.

BCR ↔ borrowed closure rule, Section 1.
CE ↔ Chapman–Enskog, Section 2.
CR ↔ closure rule, Section 1.
CJC ↔ Completely Justified Closure, Section 1.
eVDF ↔ electron VDF, Abstract.
FoM ↔ Figure of Merit, Section 3.
HS ↔ Hartle–Sturrock, Section 4 .
iVDF ↔ ion VDF, Abstract.
LTE ↔ Local Thermodynamic Equilibrium, Section 2.
SH ↔ Spitzer-Härm, Section 2.
VDF↔ velocity probability distribution function; if physical
�0, Abstract.
VoM ↔ Verification of Mechanism, Abstract.
WECIDO ↔ What Else Could I Do? Section 5.

Appendix B
FoM for Nonnegativity Impact on Moments

Assume a 3D velocity space indexed as «ℓ i j k, , that is
sufficiently dense in vi, θj, fk to allow the desired moments to
be determined well numerically as a weighted triple sum with
quadrature grid weighting Qℓ. At this resolution, inquire the
sign of the underlying VDF that supports the closure VDF
solution denoted fℓ; construct indexed Heaviside like matrices
with the properties:

( )
= «
= « <

P f

P f

1 0

0 0, 18
ℓ ℓ

ℓ ℓ

and

( )
= «
=- « <

N f

N f

0 0

1 0. 19
ℓ ℓ

ℓ ℓ

For a given moment with velocity space weightsℓ at the
mesh points where f is tabulated, the FoM for nonnegativity is

( ) ( )= -
S
S





f N Q J

f P Q J
FoM 1 , 20ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

where «ℓ i j k, , , and Jℓ is the velocity space Jacobian. The
FoM() is exactly unity when Nℓ=0 for all ℓ. The FoM then
reflects the fraction of that moment determined by nonnegative
f values.
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