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Abstract

Quality metrics for Spitzer–Härm and Grad closures are presented based on the percentage of the heat flux moment
supported only by nonnegative, physical, phase space densities > 0 underlying the closure. The Spitzer and
Grad qualities exceed 95% for the perturbative regimes where Spitzer’s formulation is analytically known to be
convergent. Beyond this regime both heat flux qualities fall about 30% per decade increase of ò>0.01. In the solar
corona the first decade’s decrease in quality straddles the radius of the coronal temperature maximum and spans the
initial acceleration of the solar wind. By the end of the second decade of increase of ò the observer is between 5 and
10Re, already in conditions comparable to those at 1 au with ;60% degradation of quality. These strong radial
decays of closure quality show that integrating the fluid equations using such closures must represent a very poor
assay of the role and effects of ∇·q had the heat flux been described throughout with a uniformly high quality
closure procedure. For small ò, < 0 occurs for cosine of pitch angle μ<0 opposed to q at speeds above 2
thermal speeds and are omnipresent (but ignorable) for truly perturbative closures. Above a computed threshold in
ò unphysical < 0 occurs for speeds below 2 thermal speeds with μ>0. The present work graphically shows
< 0 regimes becoming increasingly pervasive as ò increases, first crossing ;4 thermal speeds at μ<0 and then

representing ever larger unphysical incursions within the needed velocity sphere required to accurately determine
the heat flux.

Unified Astronomy Thesaurus concepts: Astronomical models (86); Astrophysical fluid dynamics (101);
Hydrodynamical simulations (767); Main sequence stars (1000); Plasma physics (2089); Solar coronal heating
(1989); Solar corona (1483); Solar wind (1534); Stellar winds (1636)

1. Introduction

The drive for economy of description of astrophysical
plasmas strongly encourages modelers to use a fluid model for
these ionized gases. An essential part of such a model is its
adopted closure that involves assumptions that allow a finite
number of partial differential equations to approximate the
much more difficult solution of the fully kinetic integro-partial
differential Boltzmann equation. Using the chosen closure
allows the solutions of a reduced set of equations to be
analyzed to demonstrate consistency with the closure’s
assumptions while suggesting what heat would flow, how
viscous stresses would be released, what frictions would be
relaxed, and more generally how these plasmas might rearrange
their profiles in response to the spatial gradients they are
allowed to support. There is a wide range of strategies for
arriving at fluid level descriptions and evaluating the assump-
tions that underlie these closure strategies.

While this paper focuses on a commonly used fluid
approach for space plasma modeling, it does not tacitly argue
for or against the relevance of other fluid models. At the
paper’s end a brief survey of closure approaches are compared
and the suitability of their closure assumptions for modeling the
corona and solar wind is briefly inventoried, sorting their
approaches by the lessons learned about the SBG closure
studies of the main paper.

The near coronae and winds of stars originate in high density
stellar atmospheres where collisions are common. This paper
explains and displays an objective measure of the quality for
two specific plasma fluid closures used for such a regime,
which are usually referred to as Spitzer–Braginskii (SB; Spitzer
& Härm 1953) and Grad’s 8 moment (G; Grad 1949) methods.
The truncations made possible by these closures are based on a

perturbation expansion (given in Equations (4) and (5)) for the
underlying velocity distribution function (VDF) that for these
closures is only slightly removed from the local thermal
dynamic equilibrium expected in the high density stellar
atmospheres proper. This parameter regime is often loosely
referred to as the collisional regime for plasma fluid closures.
The closures’ VDFs provide an assumed bridge between their
approximate compatibility with a world view of scattering and
its enabling property to form any and all moments needed to
truncate the otherwise infinite set of fluid moment equations
needed to fully emulate the kinetic equation.
The SBG closure approach presumes that the Knudsen number,

K=1, is a small perturbative parameter, where K=λmfp/L is
the ratio of the mean free path for scattering, λ, and the spatial
scale of the realized fluid’s gradients, L. Unfortunately K varies
strongly with stellar radius and the SB closure is known to be
invalid for K>0.01 (Gurevitch & Isotomin 1979; Gray &
Kilkenny 1980; Schoub 1983; Scudder & Olbert 1983). This
situation makes the SB closure inappropriate for almost all of the
corona solar wind volume, despite its current common use across
this relatively accessible astrophysical plasma. Calculations with
stellar data suggest that above r>1.05Rå all stars on the main
sequence have Knudsen numbers in excess of the upper limit of
K=0.01 for the physical consistency of SB closure (Scudder &
Karimabadi 2013).
The quality measure developed in this paper illustrates the

degradation of the SBG closures as K increases. The derived
decrease in the quality reflects the increased fraction of heat
flux supported by unphysically negative probabilities in the
VDF, which is the central leverage for the closure. Above
K=0.01 the decay of the SBG closure quality reflects
the extensive negative and unphysical probabilities within the
closure’s VDF that reach very low speeds in thermal units.
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The high speed powers in the heat flux moments accentuate the
importance and locales where VDF<0, producing counter-
intuitive effects such as negative phase space densities at
negative cosine of pitch angle μ values adding to the parallel
heat flux along μ=1. The heat flux weighted quality of SBG
of this paper recovers the K=0.01 boundary below which
SBG is analytically known to be valid.

This paper does not seek to rehabilitate the Spitzer–
Braginskii or Grad (SBG) closures for finite K astrophysical
plasmas. Rather, the objective is to visualize the unphysical
situation openly being condoned when SBG closures are used
for plasma systems that have K>0.01.

In the low corona and acceleration zone of the solar wind,
conclusions continue to be drawn that the observed solar wind
cannot be explained by heat conduction alone (Killie et al.
2004; Cranmer et al. 2007; Usmanov & Goldstein 2006; van
der Holst et al. 2010, 2014; Chandran et al. 2011; Manchester
et al. 2012; Gombosi et al. 2018; Reville et al. 2018;
Schiff 2020; Matsumoto 2021). These modelers have used
the SB or Grad closures, sometimes including additional
physical processes to improve agreement with observations.
This line of argument is then extended further, seeking to
establish the centrality of new effects of wave-particle heating
as the required ingredients to explain the coronal temperature
inversion and drive the wind. This cantilevered set of
arguments is done while retaining the Knudsen number
inappropriate SB closure as the truncation justification for the
finite fluid moment equations in the finite K regimes being
modeled.

This paper provides a quantitative and visual way to see the
unphysical behavior condoned by using SBG closures beyond
the very small Knudsen numbers where they are analytically
known to be valid. It demonstrates that the assumed velocity
probability distribution function that enabled the closure
becomes pervasively and unphysically negative, causing the
heat flux and other moments to be increasingly determined by
domains of negative total velocity probability distributions.
Using such a dramatically unphysical heat law for closure in
finite K regimes vacates any meaningful information from
comparing its profiles with observables. Using the same fluid
closure with additional physical effects still remains unphysi-
cally closed, but mathematically done with a broken SBG
framework.

Unless specifically singled out for contrast or comparison,
properties of closures discussed in this paper refer to SBG and
are not necessarily asserted to be the properties of all closures.
A look at alternate closures from the vantage point of the
diagnosis of the SBG closure failures complete the discussion
section at the end of this paper.

2. Background

Chapman–Enskog fluid closures, like SB, suggest functional
relationships between the highest retained and lower moments
that are then inserted into the fluid description. These
relationships are the configuration space residues of the
velocity space functional form used for the closure’s phase
space density,  v A, ,( ), whose details are lost when forming
the fluid moment equations. For the description of steady-state
transport the values of Ai are chosen for certain conservation
law purposes (e.g., quasi-neutrality, zero current parallel to b̂);
ò is an identified dimensionless variable assumed to be small as

the basis for linearizing the Boltzmann equation. In the
Chapman–Enskog closure ò is the local Knudsen number,
K=λ/Lr, where the mean free path and the shortest (rth) scale
length among the moments are denoted by λ and Lr,
respectively. The chosen  v A, ,( ) is an approximate solution
of the Boltzmann equation if ò is suitably small; for SBG
closure these perturbations are developed as corrections to a
local Maxwellian, e.g., Hazeltine & Waelbroeck (1998). As
is well known, solutions of the Boltzmann equation with
nonnegative initial conditions remain nonnegative everywhere in
x,v, andt, consistent with their interpretation as probabilities.
The closure represents an assumption, whose consequences

allow a fluid description dependent on x andt, but independent
of v space properties. Such a fluid description appears to have
no contact with the evolution of the plasma in velocity space.
This appearance ignores the chain of approximations required
to make the fluid equations a closed set of partial differential
equations relating velocity space moments of the underlying
distribution functions and their gradients, without monitoring
the evolution of the probability distribution function f (x,v,t).
This compartmentalization, while desired for the computa-

tional solution, gives the incorrect impression that these closed
fluid equations are equally valid regardless of the solution
profile properties that they produce. As is well known the
solutions produced can easily violate the assumptions that
allowed the mathematics of the closure to be formulated; the
quality of the solution and the relevance of the closure
minimally requires a posteriori checking that its assumptions
are not contradicted by the solution. For example, if K=<1
is assumed in the derivation K(x) may not remain small across
the domain of the solution, invalidating that solution profile.
A common form for the SBG closures for  has the form

p
n n m-   x v

x
x

xA
n

w
f, , , , 1 , 1o3 2 3

( ) ( )
( )

( )( ( ) ( ) ) ( )

where fo is an isotropic Gaussian,  is a polynomial in
dimensionless speed ν=v/w(x), μ is the cosine of the
traditional pitch angle, and w(x) is the thermal speed spread of
fo. In the perturbative ò regime > 0 is implied almost
everywhere by Equation (1). (Further details are shown below.)
The spatial dependence of the presumed perturbative quantity
ò(x) depends on the solutions that result from the closure. This
variation is unknown until verified a posteriori; whether it
remains uniformly and adequately small across the solution
generated is the final justification of the perturbative assump-
tions. This inventory is only rarely performed and almost never
discussed by the modelers of astrophysical plasmas that
introduce SBG closures; a posteriori it is the only protection
for the liabilities of the fluid modeler using SBG closures;
otherwise there is no clear argument that the solution rests on a
physical picture rather than a mathematical one.
For the popular Spitzer–Härm closure ò is the mean free path

for scattering over the shortest background scale of gradients;
not only do the fluid equations imply spatial variations in the
mean free path, they also imply changes in the spatial scales of
gradients of the solution also influenced by gravity, rotation,
and radiation. The closure approach posits in advance that ò(x)
remains perturbatively small through the spatial domain of the
fluid solution that is fully capable of contradicting this
assumption.
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When used to derive steady-state spatial profiles SB closures
choose  consistent with (i) zero steady-state currents parallel
to b̂ and (ii) quasi-neutrality; only in this regime does this
analysis produce a simple Fourier like heat law that only
depends on the temperature and its gradients.

From observations in the solar wind and indirect indicators
in other astrophysical plasmas, the =  1( ) regime is expected
to be commonplace. For this regime Equation (1) predicts
many places where < 0 and the perturbative closure
approach is analytically known to be inconsistent. The present
paper seeks to explore the idea that defective perturbation
expansions have an accessible, physical thumb print: pervasive
underlying negative velocity probability distributions < 0
used as proxies for local solutions to the Boltzmann equation.

The possibility of < 0 is not a new finding of this paper or
for transport solutions. Often its occurrence is noted and
discounted (especially when occurring at many thermal speeds)
by appealing to the convergence produced by the Gaussian in
Equation (1) for all moments needed to proceed with the
closure algebra. Work has attempted to address these closure
difficulties (Struchtrup 2005) and recent work (Ng et al. 2018)
has illustrated attempts to sidestep this problem with Grad’s
closure by using a maximum entropy closure (Levermore 1996)
that is at least guaranteed to be nonnegative.

The focus here is to ascertain how and when the negativity of
 that attends a given adopted closure undercuts the quality of
the moments determined using that closure, providing an
objective basis for discounting interpretations of fluid solutions
determined with these closures. Since Grad’s approach to
closure does not have an analytically known domain of validity
this paper’s technique allows an examination of Grad closure’s
VDF to see how its positivity and heat flux depend on its small
parameter, which is the ratio of the heat flux to the so-called
saturated heat flux. This approach gives a practical veto for
accepting results with the Grad 8 moment closure as well.

Because Gaussians always dominate divergent polynomials,
the moments of Equation (1) always exist. These converged
numbers can easily be dominated by numerical contributions
from the locales where < 0, even when this occurs where ∣ ∣
is very small compared to the maximum of the Gaussian.
Because the transport modified moment integrands go to zero at
very high powers of speed (see the Appendix where exponents
of 5, 8, 9,10, and 11 are involved), significant, if not dominant
contributions to the moments can occur for speeds well removed
from the Gaussian’s peak (see Appendix Equation (26) for
estimates). Thus the impact of < 0 can be significant on the
heat flux moment, even when it occurs at speeds well above 3
thermal speeds when some might suggest they are of no concern.
This will be made quantitative and visualizable below.

This paper exhibits as a function of ò the occurrence and
systematics of what percentage of the local moment’s value in
the fluid equations is computed from velocity domains where

< v A, , 0( ) ) (Scudder 2019a). Specifically, if the Ith total
reported moment is I and if -

I were the integrated
contribution to the total moment from < v A, , 0( ) locales,
then the Ith quality,I , of the Ith moment is given by

=
-

=- +
 






100 100 . 2I

I I

I

I

I
( ) ( )

This quality quantifies the portion of the closure’s prediction
for the moment determined only by the physical part of the
probability distribution function,   0.
A moment of order I weights the underlying distribution

function  with speed factors scaling ∝v I+2. The higher
the moment I value, the larger the weight’s speed leverage
to resist suppression by the unperturbed Gaussian factor in
Equation (1). From this systematic the most stringent quality
test for a closure comes from the highest moment I retained by
the closed fluid equations. When closed at the energy equation,
the desired quality test would be for the heat flux, III.
The size of the spatial variation of the quality factor across

the fluid solution obtained also comments on the reliability of
the heat flux source term used in the conservation equations,
since they ideally would contain ∇·qT with qT being the
physically accurate heat flux. When there is a degradation of
quality the disparity between qT and the value of q reported by
a closure with quality  has a relation of the form

= +  q q x . 3T ( ( )) ( )

When < 0 occurs in a model such as Equation (1), the
moment computations take on unphysical twists. As an
example, ignoring that  should be nonnegative to be
appropriate, one might argue that the ò correction term in
Equation (1) makes no contribution to the density by
orthonormality of Legendre polynomials. If one restricts one’s
attention to the part of the phase space where Equation (1) is
nonnegative the surviving part of   0 no longer enjoys this
orthonormality. Confusing but true, the onset of < 0 is not
necessarily attended by negative moments of density, trace of
the pressure, or temperature. For the vector and tensorial
moments the intrinsic algebraic cancellations that occur when
the VDF>0 are now complicated by new behavior that
attends those phase space regimes where < 0.
This paper graphically shows that unphysical < 0 is

present in these closures even when they are truly perturbative.
These effects were ignorably small nuisances when ò�0.01
occurs. For finite ò their once ignorable unphysical negative
probability distributions grow to envelope the phase space,
dominating the fluid dynamic modeling in astrophysics, being
terribly unfaithful to the Boltzmann equation they were
supposed to approximate.

3. Two Perturbative Heat Flux Closures

The SBG perturbative closures have velocity probability
distribution functions (Equations (4) and (5), below) that fit the
simplified form of Equation (1). The physical meaning of the
dimensionless ò in Equation (1) follows from the approximations
of the perturbation expansion assumed. In CE and SB ò is
determined by the pressure Knudsen number, P, or the
collisional mean free path over gradient scale; in Grad’s 8
Moment closure ò(x) is assumed to be the dimensionless heat flux

= q qsat , where qsat≡3nmew
3/4, where mew

2≡2kTe.
These expansion factors are related, as shown in Equation (7).
The premise for closures of the type of Equation (1) is that

the correction to unity remains small at all speeds and pitch
angles. The polynomial in speed  is determined by the energy
dependence of the collisions involved and the type of
perturbation being attempted. Because  is analytic it
eventually grows without bound, making it clear that whatever
ò(xo)ʼs finite size, there will always be speeds v for the VDF in

3
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xoʼs locale for which the correction term in Equation (3) will
exceed unity; together with odd parity of qcos this implies that
the velocity distribution function VDF will become physically
negative at that speed for some range of pitch angles.

3.1. Spitzer–Härm–Braginskii Closure

The Spitzer–Härm form of this type, f S, is based on a
Chapman–Enskog style expansion about a Maxwellian VDF
associated with uniform parameters as presented, for example,
by Hazeltine & Waelbroeck (1998):

n m n n m

n
p

n

n
p
n n

l

= -

º -

º -

=
= º - 
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where ν=v/w is the dimensionless speed measured in thermal
speed units of fo. The single speed maximum of  occurs at the
indicated value  S* . In the correction to unity expression small
terms have also been omitted that depend on the very small
electron flow Mach number using the electron thermal speed.
The derived form of Equation (4) with perturbations about a
posited Maxwell–Boltzmann fo(v) shows that ò in this
expansion about a uniform equilibrium is the temperature
Knudsen number, T .

3.2. Killie Version Grad’s 8 Moment Method

The Grad form determines a modified 8-moment closure
form given by Killie et al. (2004)
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where qsat≡3nkTw/2=(3nmw3)/4. This form is a modifica-
tion of the 8-moment closure suggested by Schunk (1977) and
used to model the solar wind expansion. Recently this closure
form was suggested to be better than Spitzer for coronal solar
wind acceleration studies up to and beyond 1 au (Schiff 2020).

The functional forms in Equation (1) for f G and f S above will
jointly be referred to as  below:

n m n m n m« f f, , , , . 6G S( ) { ( ) ( )} ( )

Both were constructed to be mathematically consistent with
zero parallel current, regardless of the size of ò or the
occurrence of < 0; these integrated mathematical constraints
were imposed on the function  without ensuring that  was
physical throughout the integration domain of the velocity
space.

Both Equations (4) and (5) possess heat flows scaling with
the saturated heat flux parameter, qsat, given above:
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Unlike the Spitzer form the Grad value of qP appears not to
depend on gradients, but just the local value of density and
temperature; to some extent this is illusory, since in that
method there is another fluid evolution equation retained for
, causing interdependence with all lower order moments
and their gradients.

4. Inventory of Closure Quality

Recently Scudder (2019a) proposed to examine closure
suitability by quantifying the impact of negative phase space
densities on the moments used in the fluid equations that they
support. This paper illustrates a mixed analytical and one-
dimensional numerical integral formulation to assess the
importance of < 0 in the moments for the SBG closures
given above in Equations (4) and (5).
Assuming  is gyrotropic the fluid moments have the general

form:

ò òp nn m n m n m=
m

m
+

¥

=-

=
 w d d I2 , , , , 8I

I 3

0

2

1

1
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where is the velocity space weight involved in the moment;
as an example, the parallel heat flux is determined by the
weight function n m n m= III m, , 0.5 .e

3( )
The suggested analysis is to investigate the size of  I,

determined by
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3

0

2
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where n m- ,( ) is only nonzero when  n m < , 0;( ) similarly
n m+ ,( ) is only nonzero when n m > , 0( ) .
One measure of the failure of the closure is the percentage of

the total reported moment supported by the unphysically
negative - contribution (Scudder 2019a):

= =
+
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- +








 
100% 100% , 10I

I
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I
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that is the complement of the quality I defined in
Equation (3). Typically the quality metric of the closure will
be strongly varying according to ò(x) across the modeled
system. Examples of such common spatial decays of quality for
both these closures are shown below (Figure 9) for an example
of modeling the solar wind expansion.
Because the correction term to unity in Equation (1) is a

completely separable function of ò,μ, andν it is possible to
find the limits on μ(ν) algebraically, reducing the 3D moments
to only a 1D integration over all ν. This implies that
Equation (9) has an equivalent form involving only one
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improper numerical integral form:
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m n

m n


+
¥

 -

 +

 w d d2 , , ,

11

I
I

,
3

0

2

, ,

, ,
( ) ( )

( )
( )

( )

where μ(−,±,ν) are the extremes of μ for a given speed ν,
where ¹- 0 and where μ(+,±,ν) are the extremes of μ for a
given speed ν, where ¹+ 0. If for a given speed νo no μ

interval exists, the μ integrated contribution from the νo speed
shell becomes zero by the convergence of the two μ limits of
integration. All of the moments of initial interest are of this
separable type.

An explicit example to be used below for the heat flux
integral exploits this separability, reducing to a single improper
integral form
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The remaining work is to specify μ(−,±,ν).

5. Numerical Improper Integral: ν∫

Because the moments integrals are improper, the trouble-
some issue of numerically performing Equation (12) requires
either mapping the semi-infinite domain to a finite domain
together with a Jacobian, or finding a sufficiently large finite
upper limit, call it ν∫, so that little error accompanies the proper
integral approximation:

ò òn n n n
n¥ ò

g d g d , 13
0 0

( ) ( ) ( )

while performing a maximally dense sampling of the selected
finite interval.

When moments of this type can be done analytically they
involve Γ(q), Euler’s gamma function. A common method for
numerically handling integrals of this type is discussed in the
Appendix for the heat flux integral. There a lowest allowable
size ν∫;3.9 is estimated. The numerical integrals of this paper
are done for 0�ν�6 so that even the very small
contributions above the 3σ contributions estimated in the
Appendix are numerically retained in the results below.

Throughout the text below ν∫ will be an important reference
boundary for judging when < 0 effects start to reduce the
quality III of these heat flux closures. As an example it is
shown that the regime of maximum convergence known for
Spitzer–Härm is recovered by the present approach, essentially
the ò regime where < 0 starts to encroach inside the sphere
estimated by ν∫;3.9 (see Figure 3).

5.1. Making the Integrals Fast

The polynomial closure forms in Equation (1) depend on
three-dimensionless variables: {ò,ν,μ}. The generic structure
of  for both Spitzer and Grad 8 moment closures is shown in
Figure 1 and will be exploited to simplify the needed integrals
to the 1D form of Equation (12).

5.2. Where is < 0?

Unphysical VDFs with < 0 are determined by the real,
allowed roots for {ò,μ,ν} that simultaneously satisfy the two
conditional inequalities:

n m
m

- <
-


 

1 0
1 1. 14

( )
( )

For each ò there is a restricted problem in the {μ,ν} variables
to find regions that satisfy the first inequality in Equation (14).
These boundaries can be found analytically, accelerating the
exploration of this problem and its dependence on ò. By far the
most complicated determinant in these bounds is the speed
dependence of the polynomials n( ) surveyed next for their
common properties. The {μ,ν} regions where Equation (14) is
satisfied provide the velocity space limits of integration needed
to determine how much such regions contribute to the reported
moments of the closure.

5.3. Structure of 
The speed profiles for Spitzer and Grad closure n( ) from

Equations (4) and (5) are indicated by blue and red curves,
respectively, in Figure 1 for the given value of ò. Both curves
are bounded positively at low speeds below νγ. Two speed
zeros occur at (0,νγ) as indicated by filled dots with colors the
same as the model’s  curve. Importantly, both polynomials
diverge for large speed toward −∞; being bounded
positively, these analytic functions must diverge with large
negative values beyond ν>νδ>νγ.
The perturbation parameter ò linearly scales the magnitude

of the heat flux, but also controls the complexity of the
phase space volume where < 0 occurs. Speed roots of

Figure 1. Profiles of n ( ) for Spitzer (blue) and Grad (red) closures for
ò=0.67. (The maximum of the Grad curve is below unity.) The polynomials
are bounded positively at small ν, between two speed zeros at ν=0 and
ν;2, but diverge toward negative infinity when ν;2.
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n =  0, 1∣ ( )∣ specify important changes in behavior, tagged
by (4) filled cyan circles for Spitzer closure and (3) red ones for
the Grad closure (one of the red circles is underneath a cyan
one at the origin). With the size of ò chosen for this illustration
there are no analogs for the Grad closure of the indicated να or
νβ points for Spitzer’s closure. They bound a ν interval where

n   1( ) . As shown for Spitzer’s closure, when    1 the
new locations for να and νβ will exist. When present the phase
space becomes more complicated with an additional region (II
below), where < 0.

: Since physical roots require |μ|�1, the conditions for
roots for < 0 must be consistent with this additional
inequality. An exhaustive set of possibilities on the size of
  yields the corresponding conditions for μ where non-
physical < 0 will occur: Region I < -  1:
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For < 0 contingencies (i, ii) have no solutions with
−1�μ�1, actually delimiting the opposite physical
domains where > 0 at all physical pitch angles.

Conditions (iii) and (iv) in Equation (15) define two possible
disjoint locales of < 0. Inequality (iv) presumes that

>  1* that for general ò may not occur (consider the Grad
profile in Figure 1); this phase space domain’s occurrence
depends on a sufficiently large value of ò and controls Region II
effects discussed below. By contrast, condition (iii) is generally
possible for speeds ν>νδ; this omnipresent domain of
unphysical  is labeled Region I below. When Region II
effects are present it represents a serious further degradation of
the heat flow quality,III, shown below.

5.4. Two Zones Where < 0

Conditions (iii) and (iv) in Equation (15) determine the
conditions for two different phase space regions where < 0
can occur:

Region I: The Region I condition for < 0 reduces to the
conditions:

n
m n n-

-
< < d


  1

1
0; 16

∣ ( )∣
( )

that can always be satisfied for ν>νδ, since by definition
n º -d 1( ) as shown in Figure 1. The smallest speed where

this inequality is first met is νδ. While the existence of Region I
with < 0 does not depend on the size of ò, the minimum
value of the speed νδ(ò) where this region can occur does
depend on ò. Geometrically this can be foreseen since
increasing ò raises the maximum of   while the polynomial
must still go through the same zero at ν=νγ. Thus, increasing
ò causes the   curve to pass through zero more steeply at
ν=νγ and transiting −1 more immediately than for weaker ò,

making νδ(ò) a decreasing function of increasing ò that will be
explicitly shown below in Figure 3.
An example of the sign partition of gyrotropic phase space

determined by Equation (16) is shown in Figure 2 for a
perturbatively small ò=0.001 for the Spitzer closure. (This
regime is below the known upper limit for ò for the SB closure
discussed above.)
The Region I boundary is at nonpositive μ�0, with the

Region I part of phase space indicated in red and at speeds
larger than the radius of this boundary at a given negative pitch
angle. The green and white circles are concentric about the
Gaussian rest frame origin, showing that the red–blue interface
between Region I and the blue zone for physical > 0 flares
outwards from μ=−1 from a circular form about the origin.
This implies that the pitch angle averaged speed of this red–
blue boundary, nm0, exceeds the minimum speed on this
boundary, νδ, that always occurs at pitch angle θ=π, opposed
to the yellow segment that denotes the pole of the pitch angle
phase space.
The outer white circle at speed ν∫ is the minimum acceptable

maximum speed upper limit when approximating the improper
heat flux moment numerically (estimated in the Appendix); it is
of considerable importance in this paper.
This picture shows that, for this value of ò, Region I domains

of < 0 are present but do not penetrate within the spherical
speed ν∫ necessary to obtain a convergent value for the heat
flux integral. The contributions from blue regions where > 0
and inside the sphere of radius ν∫ are more than sufficient to
determine the reported moment without any (significant)
contributions from < 0. In these circumstances the cavalier

Figure 2. Illustration in red of Region I of phase space where perturbative
ò=0.001 Spitzer closure distribution < 0 is shown as a function of pitch
angle and dimensionless speed ν=v/w;v is the particle speed and w is the
thermal width of the reference Gaussian. The complementary blue part of phase
space corresponds to > 0. The yellow horizontal axis is the μ=1 pole of
this presentation in pitch angle format, while Cartesian speed distances in
normalized units ν=v/we are indicated along the box’s perimeter. νδ is the
minimum speed radius of the red–blue interface in the figure, and corresponds
to where n = -d  1( ) in Figure 1 above.
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integration over the entire velocity space makes no difference
to a more rigorous inventory of contributions only from > 0.

Throughout the remainder of the paper it will be shown that
as ò grows, νδ decreases, and the Region I supports of the
closure with < 0 intrude more and more inside the ν∫ sphere
that determines the heat flux. This implies the closure’s heat
flow predictions are more and more reliant on unphysical
distribution functions, implying increasingly poorer qualities

III( ) as shown below in Figure 6.
The variation of νδ(ò) is shown with solid red and blue

curves for both closures in Figure 3; they are generally below
ν∫, the minimum–maximum speed shown in the Appendix
required to estimate the heat flow moment numerically with
precision. Of subsequent interest is the negative pitch angle
averaged speed profiles nm<0 of the intrusion boundary of
< 0, shown as red and blue dashed–dotted curves for the two

transport models. Because of the flaring of the red–blue
interface it is clear that n n>m d<0 with the average boundary
always exceeding the minimum νδ, being most disparate from it
at very small ò.

The very small initial range in this figure where n n> òm<0

corresponds to the convergent range for Spitzer–Härm (below
the vertical black dashed line at 0.01), where though present,
< 0 is arguably ignorable in a quantitative sense for

informing the moment of the closure. It should be recalled
that this upper limit for Spitzer–Härm was determined by
analysis of the convergence of perturbation expansions, a rather
difficult subject for analysis and not always possible to be
performed for new proposed closures. By contrast, the quality
technique requires only that the closure function be specified
for the positivity issues to be examined.

For ò>0.01, where it is known that Spitzer–Härm is
inappropriate, the present approach (Figure 3) uniformly shows
via n n< òm<0 and that < 0 is an increasing determinant of
the closure moment. Interestingly, the analogous boundary for
Grad’s closure (red dashed–dotted curve) shows nearly
identical behavior, suggesting that whatever promising aspects
are perceived in Grad’s closure formulation, it too is on as

weak a foundation as Spitzer–Härm for ò>0.01, despite
recent arguments to the contrary (Schiff 2020).
The blue dashed–dotted curve of nm<0 is consistent with

restating the location of the known failure regime for Spitzer–
Härm located at the vertical black dashed line. Grad’s nm<0

curve in red is imperceptibly different from that determined for
the Spitzer closure.
A similar presentation for larger ò=0.5 using Grad’s

closure is shown in Figure 4. The general (Region I) negative
part of phase space is enlarged relative to the perturbative
previous case, but still occurs only at nonpositive pitch angles.
The minimum speed of intrusion is now well inside of ν∫ and
approaching the green circle, corresponding to νγ in Figure 1.
The red–blue interface is increasingly more circular. From this
picture it is clear that there is a significant volume of < 0 that
is within the domain that determines the value of the heat flux.
This figure demonstrates the important, asymmetric insur-

gence of negative < 0 (shaded red) within the radius ν∫
required to determine the heat flux for this value of ò. The blue
domain of physical > 0 is also asymmetric as viewed in the
rest frame of the lowest-order Maxwellian. It is unclear whether
the imbalance of locales where > 0 will impact the quality of
the heat flux predicted by such a model. These concerns are
compounded by asymmetrical contributions from Region I that
are also increasingly determining the heat flow. In general why
should these biases not contribute further to the decreased
quality for the theory to predict the size of the heat flow? The
role of this asymmetric sampling in supporting the heat flux or
skewness moment defined over all speeds and pitch angles is
far from clear.

Figure 3. Minimum speed νδ for < 0 intrusion for μ<0, for Grad 8
Moment (red) and Spitzer (blue) closures. Dashed–dotted curves indicate
variation of negative pitch angle averaged speed nm<0 of the intrusion boundary
of < 0. While higher than νδ, both are generally below ν∫, with the pitch
angle averaged speed crossing ν∫ at ò values nearly coincident with the known
Spitzer–Härm limit of the perturbation expansion.

Figure 4. Pitch angle distribution for n( ) for Grad’s closure with = 0.5.
The blue region indicates where > 0, while red regions indicate unphysical
domains where < 0. Green circle indicates νγ, where  has its largest speed
zero. Larger white circle at ν∫ is the minimum–maximum radius in velocity
space needed to get a reasonably accurate heat flux moment (see the
Appendix). Small white circle is the minimum–minimum speed needed for the
moment integration.
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The preliminary indication is that the skewness about a
Gaussian will be determined by the amplitude of the heat flux
integral within the ν∫ sphere; as ò increases this shell is being
increasingly distorted by contributions arising from unphysical
< 0. Figures 2 and 4 only suggest part of the story of the

importance of < 0 for the closure, since it does not take the
full measure of the topography (ordinate) of the heat flux
integrand, focusing at present on the biased sampling present of
limits of physical versus unphysical  under all speed moments
for this location.

When < 0 is considered one often hears arguments that
the incidence of < 0 is not really important, since it occurs,
as shown here, at speeds greater than 2 thermal widths (ν>2),
away from the dominant Gaussian core of Equation (1). This
paper is about the distinction of  being negative versus
the integrated effect of that negativity on the quality of the
closure’s reported moment. As shown analytically below the
structure of the heat flux integrand and all the moments
deemphasize the vicinity of the velocity speed origin where the
Gaussian dominates (see the Appendix); the contribution to the
moments is determined by the competition between polynomial
growth with increasing speed as against suppression by the
Gaussian’s exponential behavior. True, the suppression always
wins eventually, making the moment convergent, but if < 0
occurs at critical places it can have a big impact on the
integrated moment and the locations where this occurs are
actually least effective if concentrated near the origin. In this
sense the quality measure developed here seeks to evaluate that
competition. (Insight to that competition is developed analy-
tically in the Appendix.)

Region II: >  1* : As indicated above in Figure 1 from the
profile of  something new is possible for < 0 when >  1.
This new behavior is reflected in a new Region II phase space
volume where < 0 that corresponds to the occurrence of an
island at positive pitch angles, where < 0 inside νγ;2
shown in Figure 5. Since the polynomial functions in
Equation (1) are fixed by the type of expansion and scattering
assumed, the incidence of this phase space Region II island is
contingent on the increased size of ò. Because of this
geometrical threshold it implies that there are ranges of

< º   1 : max , 17* *[ ] ( )

where the island will not occur. After passing this threshold in
Equation (17), the unphysical island’s speed shell width
increases and its Region II pitch angle extent grows to almost,
but not completely, fill the forward pitch angles inside of
ν=νγ indicated by the green νγ circle in the figure delineated
by the joint inequalities:

n n n

m
n

< ¢ <

>
¢

>

a b


 1

1
0. 18

( )
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This relation shows that the island is bounded by the speeds of
να and νβ, with pitch angles delimited by the second inequality
in Equation (18).

The (i) larger Region I domain and (ii) smaller Region II
speed island for n < 0( ) , when present, occur with opposite
pitch angles as shown in Figure 5. The total heat flux is
expected to be positive along the yellow axis. The contributions
δq to the heat flux from the two regions of < 0 involve

products that are proportional to

d n mµ - µ -q a bSign 1 , 19I II
3[ ] ( ) (∣ ∣ ∣ ∣ ) ( )

which is positive for Region I contributions and negative for
Region II locales. This algebra shows that heat flux is being
assembled with increments contributing energy flux in opposite
directions to the directions of the particles said to be producing
the energy flow increments! Because the region I speeds exceed
the region II domains, the net contribution is along the yellow
pole of these figures. This odd behavior also occurs when only
Region I < 0 locales occur. The Region I particles are all
moving opposite to the direction of the yellow half ray, but this
algebraic inventory insists that they add to the energy flux of
heat along the yellow axis. These algebraic occurrences seem
surreal, and although supporting increasing heat flows with
increasing ò, have a very unphysical character.
The real problem arises because < 0 has been allowed to

contribute to the moment. Contributions to the heat flux for
particles supporting < 0 are unphysical and do not meet the
basic positivity requirement for a Boltzmann equation prob-
ability density solution proxy.
When only Region I unphysical < 0 occur, excluding

their contributions from the reported heat flux correctly infers
the quality and level of support that the remaining positive
> 0 contribute to the support of the moment. When Region

II can occur, its corrections to the moment heat flux partially
cancel those from Region I, understating the magnitude of the
unphysical sensitivity of the moment. A partial response to this
problem is to recompute - using the absolute value of their
integrands using < 0∣ ∣ contributions. When this is done the

Figure 5. Same format as Figure 4, but here for >  1* and ò=1.0. New
phase space feature is the Region II island inside the green circle, where a zone
of < 0 is possible that is disjoint from Region I. In this regime the general
Region I of < 0 for speeds ν>νδ remains much as seen previously in
Figure 4; because this is a larger perturbation the Region I boundary crowds the
green circle more strongly than in Figure 4, while adding Region II’s island
effects.
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quality figure for both models continues to fall with increasing
ò and does not appear to level off as in Figure 6. When Region
II is not present, these two methods give exactly the same
result.

All of the < 0 behavior documented above has always
been a part of all the moments made from these closures.
Perhaps the fact that the integrals were done analytically in
terms of gamma functions has obscured the unphysical
character of those places (even in those integrands), where
< 0. After the moment integrals are done in closed form and

the closure relation is imposed as a condition between moments
and their gradients, it becomes a veneer that hides potentially
pervasive unphysical velocity space liabilities. However, just as
discussed previously (Scudder 2019a) it does remain possible
to inquire from the fluid solution whether its properties are
consistent a posteriori with the assumptions made when
deriving the closure. That is the full measure of the closure’s
quality for the problem at hand.

6. Sensitivity of III( )
An overview is now possible in Figure 6 of the systematic

effects of increases in ò on the heat quality III( ) of the Spitzer
and Grad closures in Equations (3) and (4). (i) The heat flow
quality deteriorates with increasing ò. (ii) Typical astrophysical
plasma systems have variations in ò that easily span the range
of this figure, implying that the quality of closure varies widely
with position in the same system. (iii) The canonical Spitzer–
Härm convergent regime of ò�0.01 corresponds to

> 95%III in this presentation. (iv) Both Spitzer and Grad
closures suffer losses of quality at the rate of the order of 30%
per each decade increase of ò. (v) Region II < 0 effects cloud
the picture beyond ò>0.7, but the quality of heat closure in
this regime and higher is not much better than 30% founded on
physical (nonnegative) velocity distributions. (vi) Attempting
to model energetics across a system that spans such a range of ò
has little likelihood of producing an actionable inventory of
properties for comparison with observables. (vii) Neither Grad
nor Spitzer are immune to this degradation of heat flow quality;
this is not particularly surprising given the similar polynomial
character of the proxy distribution functions. Considerable

blame for these sensitivities must be associated with the
choices that led to closures of the form in Equations (3) and (4).

7. Spitzer Quality versus Analytical Estimates for Valid
Closure

A graphical view of the progression in Figure 6 is shown in
Figures 7 and 8. Four pitch angle portraits are organized for
increasing ò for each closure model. The progressions are very
similar, with slight differences because the order of the
polynomials are different by one power. Insets (a) and (b)
were chosen to illustrate the evolution of the first intrusion of
Region I < 0 parts of the phase space across the sphere of
speed ν=ν∫ necessary to determine the heat flux. In inset (a)
the heat flux moment can be determined without using the
predictions of Region I, while for inset (b) the boundary has
partially crossed the sphere and is needed to produce a
convergent estimate of the heat flow. The Spitzer–Härm upper
limit for ò;0.01 is essentially between these two portraits. A
similar outside to inside incursion is seen in the Grad closure
pictures in Figure 8. As ò increases into the needed “finite”
regimes of astrophysical problems, the Region I incursions of
both closures further crowd the green circle at ν=νγ,
eventually leading to the additional domain II incursions with
negative  occurring inside νγ;2. The misordering of this
regime is now clear in both closures, since the presumed
perturbative correction in Equation (1) has now grown to be
able to compete and reverse the sign of the total unperturbed
velocity distribution supporting closure inside two thermal
speeds, while still doing this at suprathermal speeds because of
the omnipresence of domain I effects. In this regime connection
with the Boltzmann interpretation is nearly impossible. Hope-
fully Figures 7 and 8 help to convey that these are not an

Figure 6. Spitzer and Grad variations of heat law quality, III( ) as a function
of the size of ò. This quality measure for the heat flow is related to the FOM of
Scudder (2019a) by the simple relation = - FOM 100% III.

Figure 7. Spitzer progression of < 0 with increasing ò. The insets (a)–(d)
have increasing values of ò in the set {0.003,0.01,0.4,1.0}. The steady
increase of incursions of Region I < 0 is clearly illustrated in the smaller ò
examples; the onset of the disjoint Region II regime is shown in the ò=1
inset (d).
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appropriate physical description for these plasmas with these
Knudsen numbers.

8. Solar Wind Quality Variation versus Radius

In order to translate these findings to radial profiles, a well
known numerical solar wind solution (Cranmer et al. 2007) has
been used to estimate the radial variation of the electron
temperature Knudsen number T and thus ò(r). This simulation
invoked Spitzer’s closure for the inner solar wind solution
across the acceleration region and coronal temperature
maximum before switching to another closure for larger
distances. Here the published numerical profile is used to give
profiles of the coordinated variation of n, Te necessary to
survey the regimes of T they suggest. Upon interpolating
from Figure 6 for each ò(r) of the numerical solar wind
solutions, the profile for rIII( ) in Figure 9 is produced.

Near 1 au Spitzer and Grad’s heat closures have degraded
50%–60% from their high quality at the coronal base. Across
the intervening domains the temperature maximum of the
corona has formed and the dominant solar wind acceleration
has occurred. This picture gives a graphical picture of the
spatial decay of the quality of the kinetic transcription via the
closure into the fluid modeling. Even across the radial domain
where Spitzer’s closure was retained the closure would appear
to have decayed by the present quality measure by over 50%.

9. Discussion

An approach that gives a quantitative and visual portrait for
the collapse of the perturbation expansion involving Spitzer-
Braginksii and Grad closures has been presented. Based on the
idea that physical closures having the highest quality should be
based on substantially nonnegative closure velocity distribu-
tions, this approach uses the percentage contribution to the
highest order moment from < 0 reported by the closure to
quantify the closure’s quality. The method is applicable to any

closure approximation that specifies an underlying velocity
distribution, rather than a stand alone postulate between fluid
moments. In principal Landau fluid treatments Hammet &
Perkins (1990) and Hunana et al. (2019a, 2019b) are open to
such positivity analysis. This measure of quality involves
comparing the approximate closure’s moment with the
restricted value for that moment from only nonnegative .
In this sense the quality check discussed here is one of

internal consistency between the fluid level functional
constraints of the closure studied, and the microscopic physical
properties of  as a probability density. A different form of
internal consistency is performed with Landau fluid models, by
showing that they can recover the frequency dependent kinetic
behavior expected from the Vlasov dispersion relation or from
full nonlinear Vlasov solutions with full fluid models tailored to
model the same initial conditions. In this sense the quality
checks play the role of providing a “veto,” since no closure that
is internally inconsistent can be in the competition for the
physically appropriate closure for the physical system under
study. Using the Landau fluid closure as an example, its
dispersion fidelity to Vlasov may be enforced with widespread
unwanted negative total phase space density supporting the
moments involved.
This paper has concentrated on the Spitzer-Braginskii and

Grad 8 (SBG) closures to illustrate the method and also give a
visual argument against modeling the solar wind with such
inappropriate closures when the Knudsen number exceeds
0.01. The findings summarized next are specific to (SBG)
closures, but the circumstances that permit their failure can
recur in other closures under development (see Section 10).
Defining quality as the percentage of the closure’s heat flux

moment supported by nonnegative phase densities > 0, the
known analytic regime for Spitzer–Braginskii convergence is
shown to correspond to the first pitch angle averaged incursion
of negative  into the sphere of radius ν∫, where it can
numerically impact the third moment (heat flux) inventory.
With growing expansion parameter, ò, analytical, graphical,

Figure 8. Grad 8 Moment progression of < 0 with increasing = .
Similar features and progression as seen in Figure 7.

Figure 9. Spitzer Grad  RIII( ) vs. R in a theoretical solar wind profile
determined from the numerical wind profile reported by Cranmer et al. (2007).
Nearly a 60% decrease in quality is recorded between the base of the corona
and 10Re, precisely the region where the coronal temperature maximum is to
be explained and the acceleration and asymptotic speed states of the wind are
determined.
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and numerical evidence (Figures 7 and 8 insets (a)–(d)) show
that the unphysical phase space incursion of < 0 grows first
at large speeds in phase space with pitch angles opposed to the
heat flow, then is followed by a disjoint positive pitch angle
region inside ν=νγ;2 that produces the increasing closure
heat flow reported for ò>;0.7. A very counterintuitive
insight of these displays is that although < 0, the locales of
their occurrence can continue to increase the positive heat flux
along the magnetic field. In other words, the manifestation of
negative  does not always present unphysically signed
moment quantities; rather they are just unsupportable in their
size or functional dependence on ò.

A model solar wind solution (Cranmer et al. 2007) has been
used to illustrate the 50%–60% degradation of closure quality
with heliocentric radius between the base of the corona and
1 au using the SBG closures. The solar wind’s systematic
growth of ò versus radius is arguably present around most stars
(Scudder & Karimabadi 2013). Accordingly, similar degrada-
tions in SBG closure quality should also be expected in this
type of astrophysical modeling.

The heat/energy inventory predicted by SBG closures in
such regimes must surely be viewed with suspicion; agree-
ments or disagreements between fluid models with SBG
closures and observables (when K>0.01) can have no ready
implication about the physical incompleteness of the descrip-
tion of the system modeled.

Conversely, modifying the fluid scale physics modeling to
include additional processes to improve agreement with data in
the presence of such SBG closures cannot be used to infer the
need for these new fluid scale processes: a logical possibility of
such an approach is that the posited new physics incorporated
has inferred properties that compensate for the quality
inadequacies of the SBG closures still being used.

In addition, such a modeling strategy is retaining a broken
closure formalism for what is hoped to be the improved
physical model of the corona solar wind expansion. The most
secure argument for new physical processes to explain coronae
and stellar winds are produced when the new effects are
demonstrated to play the postulated role when (i) accomplished
with closures shown a posteriori to be consistent that (ii) also
describe all baseline competitive mechanisms in a consistent
way. Demonstrating the need for hydromagnetic damping to
explain the observed coronal–solar wind properties is clearly
not consistently done with a broken SBG closure, supplying a
demonstrably defective heat flux. In such an attempt SBG is
being exploited for its pro forma, but invalid, closure that
mathematically allows a fluid model containing new physical
effects to be constructed. Using SBG in such a demonstration
ensures that heat conduction’s role is not allowed to compete
for the explanation, but artificially does ensure there is a finite,
but inconsistent, list of partial differential equations to solve
when modeling hypothetical processes in the corona and solar
wind. This is unethical.

10. Closure Horizons

This paper closes with a brief survey of other approaches for
modeling large-scale astrophysical plasmas that attempt to
solve approximate versions of the problem rather than the
entire kinetic one. The spirit of this survey is to identify briefly
what alternatives to SBG are available, and of these are there
some that are, or are not, plagued with the same types of

liabilities shown above to have been detrimental to SBG
closures.
The SBG analysis of this paper has demonstrated that

unphysically negative probability distribution functions dom-
inate the heat flux reported by the closure when used for
K>0.01. The large variations of K seen in astrophysical
plasmas are caused both by decreasing densities and tempera-
tures (collisionalities), but also by steep gradients imposed on
these systems by external forces of gravity, rotation, and
radiation.
(i) Exospheric approaches model large plasma volumes and

their pervading spatially dependent forces as if the medium had
no collisions or wave-particle interactions; they obtain solu-
tions of the Vlasov equation with pervasive   0, guaranteed
(Lemaire & Scherer 1973). The solutions are determined by the
assumed boundary conditions that require specification of the
velocity distribution assumed there.
Modern versions of such solutions can produce solar wind

solutions with a wide range of asymptotic speeds, which SBG
cannot do with its broken heat recipe. Different classes of
solutions have been exhibited as a function of the phase space
boundary conditions assumed for Vlasov; when the boundary
VDFs are supposed to be nonthermal (Scudder 1992) the entire
observed spectrum of solar wind speed states are produced by
the underlying exospheric approach (Zouganelis et al. 2004).
As usually performed, this approach incorporates variable

magnetic, gravitational, rotational, and parallel electric fields
that are smooth on the ion gyro scale, but are not restricted in
gradient scales beyond this. In the usual sense of closures this
approach and its results are nonperturbative.
Three other approaches that guarantee   0 include (i)

coulomb collisions while neglecting wave-particle effects, (ii)
sizable EP, and (iii) the force of gravity, which are all known to
be present in this class of astrophysical system:
(ii) The Fokker–Planck analytic-numerical approach was

used to improved the suprathermal heat flow description,
including collisions, but retained no wave-particle interactions
(Olbert 1983). The progress demonstrated by this approach
used a semi-empirical form of the scaling of EP, explicitly
generating transonic wind solutions compatible with the strong
parallel electric field. Not only did this approach generate high
speed winds, it also produced the nonmonotonic proton
temperature profile. Since a version of the kinetic equation
was solved,   0 was guaranteed. The method is not
perturbative.
(iii) A scaled Monte Carlo model has also been developed to

recover the solar wind expansion, while explicitly incorporat-
ing speed dependent Coulomb collisions, but without incorpor-
ating wave-particle processes (Landi et al. 2012). This
approach determines self-consistently the size of EP(s) and
agrees that it is large, with   0 computed as a probability.
These models have recovered the observed ubiquitous
nonthermal form of the electron VDF, without assuming
wave-particle effects. The authors suggest that the fidelity
achieved with such a simple model demonstrates the essential
role of coulomb collisions in the wind formation, already
suggested earlier. By construction this method excludes wave-
particle interactions and iterates to find a steady-state
(Neugebauer 1976; Scudder & Olbert 1979). The method is
not perturbative and determines EP self-consistently; it is large
and comparable to its size estimated by other methods.
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(iv) SERM is a new approach under development (Scudder
2019b). It is predicated on getting a much better lowest-order
distribution function from which to seek the transport
description. Arguably o

SERM is much closer to the description
of the distribution function observed than any of the methods
described. Regardless of the size of EP,   0o

SERM and is
generally kurtotic, but reduces to a Maxwellian when EP=0.
The substantial size of EP(s) known empirically to characterize
the solar wind is respected in this approach at nearly every
consideration. The radial profile of EP(r) needed is determined
self-consistently. The approach is nonperturbative and non-
negativity of  occurs by construction.

(v) The fifth approach is usually referred to as Landau (Fluid)
closures (Hammet & Perkins 1990; Snyder et al. 1997; Josefs &
Dimits 2016; Hunana et al. 2019a, 2019b). These started as
methods to describe with fluid variables how a truly collisionless
Vlasov plasma would behave. Because these fluid equations
represent moments of the Vlasov kinetic equation (and some-
times a collision operator), aspects of wave-particle interactions
and particle collision competitions can be addressed, but at the
fluid level, rather than performing Boltzmann simulations. Of
particular importance in the Landau approach is the incidence of
resonance described at this level and a particular approach to
truncating the fluid equations for this type of description (than
can in principle be done at an infinite number of places) but are
usually imposed on the first moment above the heat flux.

The frequency and wavenumber dependence of the tensorial
elements of the fourth moment’s tensor are adjusted to
maximally improve the agreement between the Landau Fluid
simulation and Vlasov dispersion relation. Usually the agree-
ment cannot be made perfectly, and often is performed for a
given mode of particular interest (of those allowed) by
matching behavior ω↓0 and ω−1↓0 as predicted by the
dispersion relation from the linearized Vlasov equation. The
truncation recipe makes the Landau Fluid response appear as if
modified by phase mixing, and Landau damping, which of
course helps to destroy actual resonances and produce answers
rather than divergences, while also allowing predictions from
the fluid model possible for non-resonant k−ω pairs. This
procedure produces a delocalized description for the heat flows
associated with specific modes.

A key part of the theory is that the dispersion relation problem
for the linearized Vlasov system must be solved before its
properties can be imposed on the closure choices of the Fourier
transform of the tensors contained in the fourth moment. The
zeroth-order initial plasma state must be in equilibrium before
computing a dispersion relation. This consideration is the origin
of the limitations in the Landau literature that the systems where
it can be used must not contain zeroth-order forces along the
magnetic field. In particular, consideration of the evolution of
perturbations in the presence of lowest-order accelerations along
the local magnetic field are outside the scope of Landau Fluid
closures presently known to this author. This impediment is
particularly germane for astrophysics with its ubiquitous lowest-
order and prominent E o

 , caused by gravity.
The Landau Fluid closure is a perturbative approach; it imposes

an internal check that the plasma reaction in the fluid model is
truly reflective of the Vlasov dispersion relation. However, still
being perturbative there remains the question of whether the fluid
model’s finite order prediction of the total velocity probability
distribution remains nonnegative. In this sense the mathematically

elegant Landau Fluid closure does not preclude its fluid theory
being based on underlying < 0. This is the same possibility that
caused perturbative SBG(K>0.01) to fail.
The present inability to perform linearized dispersion

analysis with lowest-order EP,o restricts the class of problems
that can use this approach. Also unclear is how a Landau Fluid
closure tailored to describe Mode A behaves when the system
develops multiple modes either nonlinearly or from initial
value preparation.
This brief overlook shows that:

I. Some, but not all, approaches ensure that their solutions
automatically satisfy   0; the possibility of violations of
that condition was a prominent signature for the collapse
of SBG shown above.

II. Multiple approaches preclude wave-particle effects, but
have claimed that speed dependent coulomb collisions
are central to their success describing the observed solar
wind’s behavior.

III. Multiple approaches permit nonzero steady-state parallel
electric fields E ;o

 such fields in astrophysical plasmas are
omnipresent caused by gravity and rotation and observed
in the solar wind steady state.

IV. Some approaches as developed in the literature restrict
their suitability to systems where equilibrium field
aligned forces are not allowed.

V. Multiple approaches in group I were demonstrated to
have the   0 property regardless of inclusion of
coulomb collisions, specific wave-particle effects, or
degree of collisionality presumed.

VI. Several approaches that argue that coulomb collisions are
pivotal for the wind’s description even reproduce the
observed velocity space distributions of the electrons, not
just their overall moment behavior and support of the
observed wind.

VII. Several perturbative approaches retain the liability, like
that shown in the SBG closures, that the approximate
fluid solutions might be predicated on unphysical < 0
velocity probability distributions.

There are multiple alternate paths open for exploration and
modeling improvement that do not insist on using SBG
closures. Of those listed there are commonalities and
differences that distinguish the different approaches surveyed.
The liabilities of a given approach would appear to increase
with (i) the possibility of < 0 occurring in the theoretical
approach, (ii) the inability of the method to address the now
well known parallel forces, like E o

 , in astrophysical plasmas,
or (iii) stipulation that omnipresent collisions are not present.

Digital data from the solar wind solution provided by
Cranmer et al. (2007) has been reorganized as described in the
text for use in Figure 9. The author has profited from exchanges
with the editor and referees. This paper’s research was partially
supported by NASA grant 80NSSC19K1114.

Appendix

This appendix outlines the speed domains that determine the
size of the improper moment integral for the heat flux. When
fully expanded Equation (11) is in the form of a sum of three
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separate integrals for which the identity

n n n n- º - + nexp exp ln 20n2 2( ) ( · ) ( )

yields a very good, but different, approximation for each
integral, by modifying the integrands using:

n n n n n n- - - -exp exp exp 2 ; 21n n2 2 2
* * *( ) ( ) ( ( ) ) ( )

the peak of this approximate form of Equation (20) occurs at

n =n
n

2
. 22*( ) ( )

The second derivative of the Taylor series evaluated at the peak
of the second exponent in Equation (20) is −4, implying a
second-order accurate approximate form for Equation (20) is

n n n
n n

n n

-
- -

= -

A
n

A

exp exp
2

exp , 23

n

n

2
2

1

2

2

2

* *
*

* * *

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥( )

( ) ( ) ( ( ))

( ) ( )



a displaced Gaussian, centered on ν* given by Equation (22)
with half width in ν of 1/2. To estimate this contribution to the
moment requires tabulation about its peak across the ν interval

n n- n
3

2
, 24*∣ ( )∣ ( )

corresponding to the contributions ±3 half widths of the three
equivalent Gaussian model peaks.

The integrals for the heat flux involve speed exponents
n={11,9,5} for Spitzer and n={10,8,5} for Grad’s
closures. Thus numerical integration requires the tabulation and
properties of n m ,( ) between

n- + 0.08
5

2

3

2

11

2

3

2
3.85 25S ( ) 

for Spitzer, and between

n- + 0.08 5 2
3

2
5

3

2
3.74 26G ( ) 

for Grad. Summarizing, the moments including the heat flow
require tabulation at least across the interval

n 
 E

kT
kT

0.08 3.85 speed w interval

0.0064 14.8 energy interval 27( )

that spans a range in the probability distribution function of
1�f (ν)�3.6×10−7.
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