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Abstract

The Steady Electron Runaway Model (SERM) develops the hypothesis that the solar wind’s observed ubiquitous
nonthermal electron velocity distribution functions (eVDFs) are caused by Dreicerʼs velocity space bifurcation in
the strong dimensionless  required by quasi-neutrality. SERM’s predicted partitions for the pressure and density
are contrasted with appropriately adapted eVDF properties from the Wind 3DP experiment (1995–1998), based on
in situ observations of  . The observed number fraction of electrons in runaway, δ3DP, follows a thousandfold
decline of Dreicer’s predicted fraction, δ, across the observed tenfold reduction of  , satisfying δ3DP; δ0.89.
SERM’s predictions are shown to reproduce the observed variations with  of the electron partial pressure and
excess kurtosis,e.e and  are positively correlated across 4 yr, as expected by the SERM–Dreicer origin of the
suprathermals. SERM quantitatively explains the observed 50 yr anticorrelation between δ3DP and the partition
slope temperature ratios. This documentation quantitatively establishes Coulomb runaway physics as the missing
determinant of the ubiquitous nonthermal solar wind eVDF. Astrophysical plasmas, like stellar winds, are
unavoidably inhomogeneous, requiring  to enforce quasi-neutrality. Between the stars  is expected to be
sufficiently large that measurable runaway density fractions (0.1%–30%) will occur, producing widespread
leptokurtic eVDFs. Using inhomogeneous two-fluid information, SERM predicts spatially dependent leptokurtic
eVDF profiles consonant with Coulomb collisions and the fluid’s E∥(r). SERM can also comment on its eVDFs’
consistency with Maxwellians presumed in the Spitzer–Härm closure. The solar wind profile shows the implied
strong radial gradient of the plasma eVDF’s transformation from near thermal to strongly leptokurtic across
1.5–6 Re.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Space plasmas (1544); Collisional processes (2286)

1. Introduction

Since 1968 solar wind electrons have been ubiquitously
observed to be nonthermal between a few solar radii and 10 au.
The observed even moments of density and pressure are
essentially replicated by a superposition of one thermal and one
nonthermal subcomponent in the modeling, usually modeled
by a cooler but denser convected bi-Maxwellian and hotter and
much sparser convecting bi-kappa distributions. The nonther-
mal electron velocity distribution functions (eVDFs) across all
kinetic energies have a remarkably reproducible velocity space
dependence, as indicated by successful multiyear catalogs of
their component properties based on such routine fits that agree
with their model-independent moments through the heat flux
(e.g., Salem et al. 2021). Further, these same velocity-space-
modeled forms have been in essentially constant use since their
introduction for electrons by Montgomery et al. (1968).

Many espouse the suggestion by Parker (1958) that
nonthermal effects in the solar plasma are surely the products
of some form of turbulence. The author is unaware of any
successful attempts that quantitatively explain (i) how waves
and turbulence ubiquitously and quantitatively produce the
observed, “omnipresent,” nonthermal solar wind eVDF; nor (ii)
the origin of its well-documented shape properties.

The present paper explores the ideas of the Steady Electron
Runaway Model (SERM; Scudder 2019c) by quantitatively
documenting the prediction of nearly all the eVDF properties
ubiquitously observed over the past 50 yr in the solar wind
without adopting Parker’s suggestion. The recent proponents of
the turbulence interpretation are encouraged to develop
ubiquitous and quantitative evidence that predicts the observed
solar wind eVDF phenomena. Until then there appears no
objective basis for the author to “reiterate the role played by
wave fluctuations in the generation and maintenance of
suprathermal populations.” Despite the possible existence of
such an unreported wave explanation, it is difficult to prefer
presently unquantified wave explanations to quantified SERM
explanations for the cause of the well-cataloged ubiquitous
nonthermal solar wind eVDF.
This paper quantitatively tests that this ubiquitous suprather-

mal solar wind eVDF behavior should occur for any
inhomogeneous plasma containing a steady E∥, where the
speed dependence of Coulomb collisions is respected and
Dreicer’s dimensionless electric field  is not too large.
The SERM argument (Scudder 2019c) was motivated by (i)

Dreicer’s (1959, 1960) work concerning plasma runaway in
laboratory plasmas; (ii) initial kinetic calculations of the 1 au
eVDF by Scudder & Olbert (1979a, 1979b); and (iii) earlier
empirical studies using reported and inferred temperature
gradients about the size of  (Scudder 1996).
SERM produces a model nonthermal eVDF compatible

with assumed  , runaway signatures, and quasi-neutrality; the
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even moment controlling shape parameters of the eVDF were
predicted to be organized by  , the local pressure Pe, and
density ne. The runaway density fraction δ and ratio of
subcomponent slope temperatures τ2 were argued to be
monotonic functions solely of  .

A new quantitative phase is now possible to test SERM
predictions versus the observations for δ, τ, and e for each
eVDF acquired by the Wind 3DP investigation (Lin et al. 1995)
over a 4 yr period (1995–1998). Rather than estimating or
inferring the size of  asynchronously from other spacecraft
spatial profiles, a direct method has been developed and
validated that determines E V m10 10 -( ) and  for this
purpose at the time resolution of each eVDF acquisition
(Scudder 2022a).

These initial SERM-I shape predictions have been augmen-
ted in the updated SERM-II model by including a statistically
determined break-point energy in the SERM-II eVDF; it
appears to allow for a transition zone between initial and
assimilated runaways in the energy spectrum. These compar-
isons produce nearly perfect agreements with theoretical
predictions, knowing only the size of  for each eVDF.

After this introduction this paper proceeds to (i) review
Dreicer’s seminal insight about the velocity space bifurcation;
(ii) illustrate the model-independent observed positive correla-
tion of the Wind 3DP excess kurtosis e with the observed ;
(iii) quantitatively document the positive correlation of model-
independent observations of the runaway density fraction δ
with solar wind speed; (iv) quantitatively demonstrate with
observations the strong correlation of d ( ) predicted by
Dreicer’s theoretical work (1959, 1960); (v) quantitatively
document SERM’s recovery of δ∝ τ−2 seen in the data; (vi)
use the predicted radial gradient of the SERM eVDF properties
across a published two-fluid solution with the Spitzer closure to
contradict the closure’s assumed Maxwellian eVDF; and (vii)
show SERM’s predicted strong evolution of excess kurtosis
with increasing radial distance from the Sun.

2. Dreicer’s Insight

The seminal insight of Dreicer (1959, 1960) was his
theoretical demonstration of the peculiar response of a fully
ionized plasma to its immersion in a finite E∥. In the presence
of such an electric field Dreicer (1960) deduced the occurrence
of a bifurcation of the topology of the electron integral curves
(trajectories) in velocity space about a saddke point, SD,
indicated in Figure 1 between the cyan and green integral
curves. These curves have cylindrical symmetry out of the
plane of Figure 1 that contains E∥. The parameter involved in
the two types of trajectories is an integration constant Dreicer
called K. The integral curves of these two classes are based on
the sign of K. The jumps in K are controlled by the diffusion in
energy, which was not treated by Dreicer’s initial works. Jumps
across the separatrix by diffusion were not retained by Dreicer
and would involve a change in the sign of K, allowing slow
migration from overdamped to underdamped populations.

With this finding the speed dependence of Coulomb
collisions and finite E∥ locally induce a lowest-order compart-
mentalization in velocity space properties and thus for eVDF.
This identification differentiates the electrons in the two
compartments as having intrinsically different antecedents
and thus properties: one is essentially localized by Coulomb
collisions that favorably damp out the accelerating ability of
E∥; the other compartment’s electrons gain more energy from

E∥ than they lose by ion drag. Thus the electrons in the latter
zone are promoted in energy, while the former component’s
electrons are only weakly modified in kinetic energy by their
interaction with E∥. These two zones are analogous to the local
and global electron classes identified previously by Scudder &
Olbert (1979a).
SERM’s thesis is that Dreicer’s bifurcation is the cause of

the nonthermal eVDF. In addition, this viewpoint suggests the
fraction of electrons that should be found in the global
population of the suprathermals, a relation unforeseen by
Scudder & Olbert (1979a, 1979b) that is now subject to
experimental test. With the advent of local determinations of E∥
it is possible to test this hypothesis by asking the proper
questions of the measured eVDF, which this paper will discuss.
Dreicer’s insight would appear to be important for all

astrophysical plasmas since collisions and E∥ are virtually
assured to be present; further, sizable dimensionless  1 = ( )
is almost a certainty between the stars.
However, the profiles of these ingredients in fluid solar wind

models are often deemphasized by adopting a single fluid
momentum equation, bulk collision rates, ignoring the thermal
force, and adopting questionable truncation closures. Although
E∥(r)≠ 0 occurs in published fluid solutions, its size is only
determined by post-processing the fluid solution to unpack E∥
from a possibly incomplete electron or ion momentum
equation.
Although exospheric treatments ignore collisions, they solve

for E∥(s) as the important unknown and consider other
deterministic forces like gravity and centripetal accelerations.
Competitive decelerations by collisions were not considered
until recently, when they were introduced by assuming

Figure 1. Dreicer’s (1960) electron integral curves (electron trajectories)
moving in E∥ with ion drag. All velocities are in thermal speed units. Red
horizontal line (v⊥ = 0) and curved red parabola give two separatrices that
cross at the blue saddle point SD, located at v∥ = ϖ. Pairs of cyan and green
integral curves on either side of the parabola bifurcate about the saddle point,
diverging in opposite directions from the red parabolic separatrix. Cyan integral
curves converge on the orange node at |v| = 0. Green integral curves proceed
from vx = −∞ at finite vo,y to vx = ∞ at generally lower vy < v0,⊥. The
integral curves shown are the intersection of cylindrically symmetric integral
curves with a plane containing the electric field direction. This projection effect
produces the mirror symmetry of the traces.
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nonthermal boundary conditions (Scudder 1992b, 1992c;
Maksimovic et al. 1997; Zouganelis et al. 2004). A property
of the treatment of the wind problem as a Vlasov problem is
that the assumed eVDF boundary conditions can stream along
accessible orbits to the interior of the solution without being
produced there.

Dreicer’s modeling includes the more realistic consideration
where (i) Coulomb collisional drag resists E∥, while also
pointing out (ii) that the speed dependence of Coulomb
collisions always allows some of the electrons to be more
nearly collisionless. This model also suggests there is a finite
promotion in the energy of electrons across the red separatrix in
Figure 1, transforming initially overdamped collisional elec-
trons into locally energizing underdamped ones. In astrophy-
sical plasmas this competition is more important as r increases,
since the other forces, like gravity or neutral drags, weaken
rapidly with increasing stellar radius. The winds that form
around stars extend the plasma density to much larger radii
than where neutral gases are usually found. Being plasmas
these astrophysical competitions are essentially those Dreicer
modeled, except the origin of E∥ is internal rather than
externally applied in his motivating laboratory plasma and
invariably is attended by pressure gradients.

Dreicer’s dimensionless electric field  (Equation (1))
scales the size of electron acceleration caused by E∥ by the size
of the Coulomb collisional deceleration experience by a
fiducial thermal-speed electron’s scattering off of all ions. His
laboratory model problem did not consider forces beyond the
electric and Coulomb forces.

In Dreicer’s model two topologically different classes of
electron trajectories (integral curves) were identified. These
color-coded curves in Figure 1 reveal Dreicer’s discovery:
velocity space bifurcation of integral curves about the saddle
point at SD, where vx=ϖ.

This bifurcation is seen by the change in the topology of the
differently colored integral curves of the two different types
approaching SD. Moving parallel to, but on opposite sides of,
the (red) parabola these curves make strikingly different course
adjustments around the saddle point: the cyan trajectories turn
toward lower speeds, heading to the origin, while the green
trajectories turn to increase their speeds with increasing
distance from the red parabolic separatrix. These two different
topologies of integral curves reflect the bifurcation that creates
two distinguishable groups of electrons with different typical
properties.

For the cyan integral curves in Figure 1 the magnitude of the
speed-dependent ion Coulomb drag overpowers the magnitude
of the electric acceleration; electrons on these curves are
referred to as overdamped (Scudder 2019c). Along the green
integral curves, the magnitude of the electric acceleration
overpowers the magnitude of the decreasing speed-dependent
friction, leading to an increasing net electron acceleration with
increasing speed. Dreicer (1959, 1960) called this under-
damped secular process electron runaway.

The velocity space stream lines are topologically different in
these distinct volumes separated by the red parabolic separatrix
in Figure 1. The overdamped stream lines have a bounded
extent along the direction of the electric force, ultimately
converging at zero speed (orange dot at the ion rest frame). The
underdamped electrons’ phase-space trajectories are
unbounded, connecting negative Vx and positive Vx at large

speeds. The overdamped stream lines are further impacted at
lower speeds by diffusive energy exchange with other electrons
as their integral curves converge on the origin of velocity
space; these low-speed effects and the weak diffusion across
the red parabola were neglected by Dreicer in deriving these
integral curves.
Dreicer’s runaway insight was used to explain early

disruptions of laboratory fusion experiments, where large
applied E∥ led to a super-electron thermal-speed hydrodynamic
drift separation of nearly all electrons from the background
ions. When this drift occurred, it was called bulk runaway and
was accompanied by strong parallel dimensionless electric
fields in the sense defined by Dreicer (see Equation (1)). Such
bulk runaway generated a sizable J∥, whose divergence
disrupted quasi-neutrality, and led to loss of confinement and
a short circuiting of the desired steady-state energization in the
limited laboratory experiment.
In Appendix B a modern variant of Dreicer’s analysis by

Fuchs et al. (1986) is shown to produce an analogous
bifurcation of velocity space and supports Dreicer’s
sufficient conditions for occurrence of underdamped run-
aways. In Figure 17 the separatrices determined by Dreicer
and Fuchs et al. (1986) are illustrated for the same
parameters. This analysis also suggests the underdamped
region is no longer open ended as in Dreicer’s less complete
treatment. Important quantitative distinctions between the
two treatments and boundary locations occurring primarily
for high-Z laboratory plasma runaway are discussed there
and in Scudder (2022a).

2.1. Dimensionless E is Key: 
Dreicer organized his predictions in terms of his dimension-

less parallel electric field  :
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where λmfp is the Coulomb mean free path for the thermal-
speed electron Coulomb scattering off of all ions. This
dimensionless quantity gauges the relative size of the electric
force on any electron to the sum over all ion collisional drag
forces, |e|ED= 2kBTe/(λmfp), felt by a fiducial thermal-speed
electron (see Appendix C). Equation (1) shows that Dreicer’s
dimensionless parallel electric field,  , is neither a vector nor
the magnitude of the parallel electric field.

2.2. Minimum Runaway Speed ϖ

The minimum runaway speed in thermal speed units, ϖ,
occurs at the apex of the parabolic red separatrix that is also the
site of the saddle point of the bifurcation in Figure 1. Its speed
is completely determined by  ,

3
, 22


v º  ( )

and is located along the direction of the electric force on an
electron.
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2.3. eVDF Response to  Changes

(i) As  increases the minimum runaway speed ϖ
decreases and the fraction of the electron density on the
green runaway integral curves increases.

(ii) In thermodynamic equilibrium 0 = and ϖ ↑∞ and
there are no runaways nor suprathermals.

(iii) When collisions are very frequent 0  and the
underdamped regime, v∥>ϖ, recedes toward infinity
and a Maxwellian can consistently be expected to
dominate the eVDF in the overdamped electrons.

(iv) The idealization of collisionless plasma with finite E∥
allows only the underdamped class. As is well known, the
eVDF in this Vlasov circumstance is determined from the
assumed boundary conditions for the eVDF and is a
collisionless sheath problem.

(v) At any finite collision frequency  is finite and the eVDF
will be bifurcated above vx>ϖ and observably
nonthermal.

For the common situation where E∥≠ 0 some electrons are
always able to runaway, even when bulk runaway is not
possible. This omnipresent runaway supplies the electron heat
conduction skew to the eVDF, while simultaneously challen-
ging the plasma to remain free of parallel currents. The steady-
state resolution of this potential for current flow is discussed in
a sequel paper about odd moments and heat flow (J. D. Scudder
2023, in preparation).

2.4. SERM Suitability for Solar Wind

The SERM model is suitable for describing the solar wind
since the observed charge number fluxes of electrons and ions
are observationally well matched (see Salem et al. 2021, see
their Figure 13), implying the electron solar wind moments in
the ion rest frame suggest no large J∥.

In Dreicer’s consideration his E∥ represented the only force
parallel to the magnetic field competing with collisions. The
electron momentum equation for the solar wind, including
pressure, inertial and thermal force effects, implies that the net
acceleration on the overdamped population that could drive
bulk runaway is considerably (<80%) smaller than  . A 4 yr
survey of  , shown in Figure 7 (Scudder 2022a), shows that
this effective electric field sw ( ) is typically insufficient to
drive the solar wind into bulk runaway. This estimate is
consistent with the routinely reported well-matched charge
number flux of electrons and ions.

2.5. Runaway Density Fraction, δ

Dreicer suggested that the runaway density fraction, δ,
caused by all electrons on the green integral curves of the
eVDF would be a strong increasing function of  . This
expectation is tested empirically with solar wind observations
below in Figure 5.

2.6. Runaways Suprathermals Are Harder than Thermals

The runaways were suggested to possess a harder energy
spectrum than the softer spectrum for the underdamped energy
range. A 4 yr correlation of Wind halo spectral indices has
shown the hardness of those spectra is positively correlated
with the size of  , as would be expected from that population
being seeded by runaway energization (see Figure 22 of
Scudder 2022a).

2.7. Summary of Dreicer Bifurcation

By incorporating Dreicer’s seminal discovery, SERM has
suggested a required astrophysical scenario for explaining the
ubiquitous occurrence of nonthermal eVDFs. Validating
SERM’s predictions with a 4 yr data set using solar wind
eVDF measurements would provide a strong in situ astro-
physical foundation for this suggestion. To be sure, this is not a
complete resolution of how the astrophysical system accom-
modates such disruptions to local thermodynamic equilibrium
in forming interstellar winds. In particular, the competing
pressure gradient profiles of these plasmas are not yet
obviously set by these considerations; the determination of
the pressure profiles that mesh with SERM’s suggestion require
consideration of the transport equations for the system, not
simply testing local mechanism characteristics as provided by
SERM alone.
Early one-fluid models of the the solar wind artfully avoided

the explicit consideration of the role of collisions and E∥. Two-
fluid solutions struggled with the size of E∥ and suitable
closures. The exospheric calculations modeled the wind as a
collisionless sheath producing improved-fidelity E∥ but ignored
collisional effects altogether. The first suggestions of the cause
of the nonthermal eVDFs in the wind involved considerations
that attempted joint descriptions of the speed dependence of the
Rutherford cross section and E∥ (Scudder & Olbert 1979a;
Olbert 1983; Scudder 1996; Landi & Pantellini 2001;
Scudder 2019c).

3. Excess Kurtosis

Before detailing the eVDF properties predicted by SERM
and Dreicer, it is important to emphasize the expected
production by  of positive excess kurtosis, e. Excess
kurtosis is the first place in the fluid moment hierarchy where
the non-Gaussian character of the eVDF may be quantitatively
measured in a model-independent way.
Specifically, the excess kurtosis for electrons, e, is defined

in the fluid’s comoving frame as the ratio of the fourth moment
per particle to the square of the second moment per particle
less a constant


v U

v U
5

3
, 3e

4

2 2
=

á - ñ
á - ñ

-
∣ ∣
∣ ∣

( )

chosen so that e is identically zero for a Maxwellian eVDF.
e is positive for a leptokurtic eVDF and negative for a
platykurtic eVDF. At a given location e can be determined
from the model-independent eVDF alone without any knowl-
edge of the size of  .
A two-dimensional (2D) histogram of the 4 yr column-

normalized probability of observed Wind 3DP pairs
 t t,e [ ( ) ( )] is shown in Figure 2. The set of blue dots within
the bright yellow region of the highest probability (in each
column) suggests the variation of the most likely  BBEe( )
encountered with  . SERM’s expected positive correlation is
recovered from input data values each spanning more than an
order of magnitude.
The observed excess electron kurtosis ranges between
0.1 10;e< < it has a 4 yr mode of  1.8e  , exceeding

the usual noteworthy dimensionless statistical measure (unity)
for overpopulated suprathermal tails.
The observed positive correlation of  0e > and 

presented in Figure 2 during 4 yr of Wind observations is

4
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consistent with SERM’s thesis that Dreicer runaway production
is the cause of the ubiquitously nonthermal eVDF seen in the
solar wind since Montgomery et al. (1968). More detailed
quantitative tests will be presented below to support this thesis.

Examples of rarely occurring small excess electron kurtosis
0 0.1e< ⪅ (and the most nearly Maxwellian eVDFs) do

occur at 1 au. Consistently, these spectra are observed to
accompany the rarest, weakest observed extremes of  .
Because  and solar wind speed are statistically correlated
over 4 yr at 1 au (Scudder 2022a), more nearly Maxwellian
eVDFs with smaller e are expected and seen in the more
collisional slow wind (but not shown), where the mean free
path for Coulomb collisions is systematically smaller than in
higher wind speeds.

4. Observations:  Th c versus 
A frequently reported measure of the nonthermal state of

solar wind electrons is the shallower logarithmic slope of the
eVDF at suprathermal compared to thermal energies. This
morphology implies that the logarithmic derivative temper-
ature, h, at suprathermal energies is larger than the same
measure, Tc, in the lowest core-dominating energy range. Since
these measures of temperature are related to derivatives in
disjoint intervals of energy, they can reflect more directly the
difference between the eVDF shape in the suprathermal and
thermal domains.

As routinely reported at 1 au, the ratio of these two pseudo-
temperatures is slowly varying on several hour timescales in
the data, with typical median values of 5–6 and generally
ranging between 4 and 10 at 1 au. This morphology, known
since 1968, remained unexplained until the SERM model’s
calculation that reproduced it (Scudder 2019c) and predicted its
relationships with the density fraction of runaways, δ.

The omnipresence of the spectral break implied by  Th c¹
effectively precluded characterizing the electrons as a single,
near-Maxwellian phase space. Since the observed ratio always
exceeds unity the adjective leptokurtic is more precise than
nonthermal for the routinely observed solar wind eVDF. The
initial explanation for its occurrence was made using a
simplified kinetic equation incorporating the speed dependence

of the Coulomb scattering cross section (Scudder &
Olbert 1979a, 1979b).
The SERM model had predicted (Scudder 2019c) that the

ratio



T
g 4h

c
t º = ( ) ( )

should be a 1:1 function of  . When the initial SERM
predictions were made (Scudder 2019c) there were no in situ 
observations to test SERM’s prediction. Using the WIND 3DP
data set and the newly available determinations of  at the
Wind 3DP cadence (Scudder 2022a), it is now possible to
sustain SERM’s prediction.
Figure 3 shows the first observations of a strong organization

of  Th c by ; by their pattern the blue centroids are
compatible with reflecting a 1:1 relationship between the most
probable values of  Th c ( ) and  .
At first this anticorrelation may seem unreasonable until it is

realized that smaller  implies larger minimum runaway
kinetic energy, v, and thus smaller allowed runaway density
fractions, requiring higher effective temperature ratios, as seen
in Figure 3.

5. Observations:  Th c versus nh/nc
A 50 yr old observed anticorrelation between  Th c and

nh/nc was also explained by SERM (Scudder 2019c). In terms
of the SERM shape parameters, the ratio of slope temperatures
is essentially τ−2:

 T . 5h c
2 t- ( )

Estimates for 1 au parameters in an Appendix of Scudder
(2019c) showed that

n n n n0.59 6h e h e
3DP   d d* * ( )

would be close to the theoretically expected runaway fraction,
δ. Figure 4 illustrates the observed correlation with Wind 3DP
data using 4 yr of data of  Th c with n*h/ne, showing their
inverse correlation:

 T 1 . 7h c
obs dµ * ( )

The full 4 yr data set illustrates the clear anticorrelation
between the approximate runaway fraction n n0.59 h ed *

Figure 2. Excess electron kurtosis log e vs. log  . A Maxwellian eVDF has
 0e º . The ordinate is determined solely from 3DP moments; the abscissa is
determined solely from prior ambipolar electric field analysis using a cut of the
eVDF along the magnetic field line opposite to the heat flux as discussed in
Scudder (2022a). Positive log–log correlation is clearly demonstrated.

Figure 3. 1 au column-normalized probability of occurrence of Wind 3DP
observed  Th c vs. observed  synthesized from over 279,000 data points
measured at the forward Lagrange point during the interval 1995–1998.

5
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and  Th c
2 t- :

. 8obs obs 2d tµ - ( )

These correlations among the Wind observables in
Equations (8) and (7) suggests if  were an observable that
δ and  would be positively correlated:

. 9d µ  ( )

This suggestion was made in SERM (Scudder 2019c) as
foreshadowing the signature of Dreicer’s bifurcation insight in
the available archival data presented.

Before documenting Equation (9) with model-independent
simultaneous measurements of δ and  in Figure 5 below, a
brief review is presented of Dreicer’s insight.

6. Dreicer Runaway Density Fraction, δ

Dreicer estimated the density fraction, Maxd , presuming a
Maxwellian eVDF plasma was placed in a nonzero electric
field. He found d ( ) to be a strongly increasing function of
increasing  (Dreicer 1960, Equation (8)).

Dreicer defined δ by computing the density fraction outside
the red parabolic separatrix in Figure 1. The parabola’s
location is parametric in the size of ; its shape is determined
by the specific speed dependence of Coulomb friction (see
Equation (10)). The cylindrically symmetric separatrix bound-
ary is implied by the joint conditions:
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where θ maps out a polar angle from the direction of bE ˆ and U
is the velocity of the ion center of mass (Dreicer 1959, 1960).

This separatrix leads to Dreicer’s integral for the runaway
density fraction from an assumed gyrotropic eVDF:
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Assuming a Maxwellian eVDF for fe, this integral becomes

2
exp 1 2 erfc . 12Max 2 2d v

v
p

v v v= - + -( ) ( ) ( ) ( ) ( )

Dreicer’s reported estimate for Equation (12) retained only the
initial product term, assuming 2 1p , revealing an
exponential sensitivity on 32

v =  . In this way he suggested
that the runaway density fraction grows strongly with
increasing  . The full prediction of Equation (12) is shown
by the cyan curve labeled Maxd in Figure 5.
Dreicer’s asymptotic approximation was only valid for large

ϖ>> 1 (very small  ) that is inadequate for our wider range
of  . Maxwellian eVDFs in a plasma with collisions are only
naturally self-consistent when E∥= 0, an uninteresting assump-
tion for estimating the fraction of runaways in astrophysics.
The determination of δ using an observed eVDF will change
the details of the predicted runaway density fraction but not its
overall strong dependence on  .
Dreicer’s unapproximated single-Maxwellian-based estimate

for d ( ) is denoted as Maxd when using Equation (12). The
runaway density fraction determined from the Wind 3DP
measurements are denoted as δ3DP. For the same range of  the
variation of δ3DP from the observed eVDF has a comparable
dynamic range as found with Dreicer’s suggestion, Maxd , using
the complete integral shown in Equation (12).

6.1. Observed Runaway Density Fraction 3DP
d ( )

The probability of occurrence over 4 yr in the 2D space of
the simultaneously observed pairs of t t, 3DP

 d[ ( ) ( )] is shown
in the log–log 2D color-coded, column-normalized histogram
of Figure 5. A thin, concentrated locus of column-normalized
probability for the observed data pairs , 3DP

 d[ ] drops three
orders of magnitude from bright yellow to black background
(moving transverse to the arc), implying a well-defined channel
in the independent variables. Its yellow crown is the locus of all
points above a column-normalized occurrence probability of
e−1.

Figure 4. Probability of occurrence of observed  Th c vs. n nh e* over 4 yr data
set acquired between (1995–1998) at 1 au forward Lagrange point.

Figure 5. Cyan: variation of Dreicer’s runaway fraction Maxd with 
presuming a Maxwellian eVDF. Colored contour: probability of detection over
4 yr of the measured runaway fraction, δ3DP, vs. the self-consistent
measurement of  (Scudder 2022a). Blue diamonds are the column average
positions of the observed probability of occurrence. The pattern of Wind 3DP
blue diamonds closely follows a trend with  of Dreicer’s estimate in cyan, but
are invariably slightly above Dreicer’s estimate while tracking one another over
three orders of magnitude. See Figure 6 for further details.
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This extent of the ordinate values implied by the yellow arc
extends over three orders of magnitude of runaway density
fraction, δ. The blue diamonds and horizontal error flags are
determined from oá ñ within a x-axis column of the histogram
and have ordinates and vertical error flags set by the mean
value of o

3DP dá ñ( ) weighted by the column entries’ normal-
ized probabilities of detection. A red curve connecting the blue
diamonds indicates the cross-column trend of blue column
means as  varies. The cyan flags at the blue diamonds denote
the variance in the ordinate, again weighted by normalized
probability.

The continuous superposed smooth narrow cyan curve
illustrates Dreicer’s Max

d ( ) using Equation (12). Over three
orders of magnitude the trend of 3DP

d ( ) resembles Dreicer’s
cyan curve, Max

d ( ). Virtually all perceptible observed 3DP
probabilities (colored regions) from 4 yr of data are totally
above Dreicer’s cyan curve. Certainly the average locus of blue
diamonds connected by the red curve for δ3DP is above the
predicted value from Dreicer’s cyan curve Max

d ( ).

6.2. Calibrating Runaway Fraction versus 
The coordinated variation of 3DP

d ( ) versus Max
d ( ) seen

in Figure 5 is significantly simplified by the red diamonds
plotted on log–log paper in Figure 6 after suppressing their
functional dependences on  . The vertical error flags for

o
3DP d ( ) in Figure 6 have been transferred from those for the
blue diamonds in Figure 5, and the abscissa and its errors are
implied by the bin average of o and uncertainty as they
propagate through Equation (12) for the indicated value and
uncertainty for o

Max d ( ) needed for this log–log format.
Synthesizing over 279,000 separate observations over 4 yr in

the solar wind, the 38 bin-averaged points in this picture are
unexpectedly well fit by a simple power-law calibration curve
of the form

Log 0.893 0.016 Log

. 13

3DP Max

3DP Max 0.893 0.016
d d
d d

= 


( )
( ) ( )

Since Maxd < 1, the exponent in Equation (13) being less than
unity reflects the observed 3DP runaway fraction at  always

exceeding that of a Gaussian using Max
d ( ) for the same value

of  , as shown by the red and cyan curves in Figure 7.
This calibration curve can be transformed into a predictive

formula for 3DP
d v ( ( )), indicated by the asterisk:

2
exp 1 2 erfc .

14

2 2
0.893 0.016

⎛
⎝

⎞
⎠

d v
v
p

v v v= - + -


*( ) ( ) ( )

( )

Arguably the trend of diamonds from δ3DP is a more accurate
predictor of the observations than Dreicer’s estimate. With care
this calibration can explore the implications of Equation (14)
over a wider range of  than available in the Wind 3DP data
used to ascertain the calibration curve.
The observed and Dreicer’s predicted runaway fractions are

 1( ) with respect to one another, even while their δ magnitudes
track over three orders of magnitude:

 1 . 15
3DP

Max
Max 0.11d

d
d= =-( ) ( ) ( )

Tabulating this shallow exponent’s prediction over the
observed range of δ in Figure 7 establishes the  1( ) estimate.
This and other relationships are shown in Figure 7. The
nonnegative difference Maxd d-* generally decreases with
decreasing Maxd , especially when 0.35Maxd < . Excess kurtosis,
e, was previously shown to decline with decreasing 
(Figure 2), the regime where the eVDF becomes increasingly
more Maxwellian. Thus, the model-independent determinations
of e predict, as seen in this trend, the convergence in weak 
regimes of o o

3DP Max d d ( ) ( ).
These interrelationships and trends are compared in Figure 7,

showing the log–log trends with  of (i) kurtosis e (orange),
(ii) δ3DP (red), (iii) Maxd (cyan), (iv) the difference 3DP Maxd d-
(green), and (v) 3DP Maxd d (blue). These trends are digests of
the average trends of probability extracted from blue diamonds
in Figures 2 and 5.
This raises some salient points. (i) Across the entire observed

range of  that  13DP Maxd d= ( ) (blue dashed), thus Dreicer’s

Figure 6. Ordered pairs from Figure 5 for ,Max 3DP
 d d [ ( ) ( )] (diamonds)

together with best-fit linear regression in red with slope of the form
3DP Max 2 0.893d d v=* ( ) . For comparison the solid blue curve has a unit slope. Figure 7. Variations of observed δ3D and Maxd with dimensionless parallel

electric field  . Noteworthy is the decrease in excess kurtosis, signifying a
more Maxwellian-like eVDF accompanying the decreasing difference
of 3D Maxd d– .
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estimate of Maxd is the correct order of magnitude as  varies,
as shown in the red and blue curves on this figure. (ii) All other
quantities are monotonically increasing with the ambipolar
electric field,  . (iii) The dynamic range of the δ quantities
span three orders of magnitude. (iv) The green curve illustrates
the convergence between the Wind-observed runaway fraction
(red) and Dreicer (cyan) estimate as the observed  decreases.
(v) The solar wind eVDF is less kurtotic with more nearly
Maxwellian properties when the Dreicer’s Maxd (cyan) curve
approaches the red observations of δ3DP as  decreases. (vi)
The sweeping decrease (green) in the difference 3DP Maxd d-
tracks the independently determined decreasing kurtosis
(orange). By documenting these properties the observed
convergence of the 3DP Maxd d at low  may be understood
as observing circumstances more nearly consistent with those
made in Dreicer’s Maxwellian estimate in Equation (12).

6.3. Consistent Runaway δ3DP(U)

The probability of the occurrence of δ with solar wind speed,
U, had been inferred from a diverse literature that spanned 40
yr of graphs in papers culled for the original discussion of
SERM (Scudder 2019c); they provided anecdotal support for
the SERM thesis. Figure 8 shows Wind 3DP measurements of
internally consistent, time-synchronized runaway fraction δ3DP

using the measured  as a function of measured wind speed;
this histogram shows the 4 yr probability of the relationship
only hinted at by the motivational Figure 1 in the discussion of
Scudder (2019c).

Coming full circle, the previously shown correlation of 
with solar wind speed U (Scudder 2022a) reproduced here in
Figure 9 can be viewed as the indirect corollary of the
extremely tight correlation between δ3DP and  experimentally
confirmed in Figure 5. Since above  is observed to be
positively, though less strongly, correlated with |U|, Figure 8
follows from Figure 5.

This is an interesting example of how the available solar
wind speed may appear to be the relevant ordering parameter
for δ, even though the more basic correlation explaining δ(U) is

U d ( ( )). Until the recent measurements of  (Scudder 2022a)
the Dreicer bifurcation remained only diffusely implied by
attempts to inventory δ(U) (Scudder 2019c).

7. The Nonthermal Solar Wind eVDF

From their earliest characterizations electrons have been
modeled as the superposition of two different functions of
speed (initially Gaussians), as in Figure 10, in clear recognition
of their bimodal parabolic trends on semi-log paper versus
speed. The second component was mandated since when
plotted versus energy the spectrum below 500 eV–1 keV
clearly had at least two different slopes and thus energy scales.
Operationally, a hinge point is defined as where the two

subcomponents used to fit the model-independent eVDF
contribute equally to the eVDF. The speed of this hinge point
in thermal speed units is denoted ν=, centered on the vertical
blue line in Figure 10.
The influential survey by Feldman et al. (1975) tracked the

variation with solar wind speed of the kinetic energy, EB, of the
eVDF break point determined as a pitch angle average about
the heat-flow direction. A possible relation of this break energy
with the exospheric potential energy barrier to infinity was also

Figure 8. Wind 3DP determination of the normalized probability of the
occurrence of the Dreicer runaway density fraction, δ3DP, as a function of solar
wind speed, U. Data acquired in 1995–1995 on the Wind spacecraft at the
forward Lagrangian point. The ridge of the highest probability of occurrence is
indicated by the bright yellow coloring.

Figure 9. Previously reported positive correlation of measured E ED = ∣ ∣
and solar wind speed (Scudder 2022a). Taken with Figure 8 this figure implies
Dreicer’s positive correlation between δ and  exhibited in Figure 5.

Figure 10. Significant locations on the solar wind eVDF (in red) cut along the
magnetic field opposite from the heat-flux sense. Labels correspond to hinge
ν=, inflection point νI, and minimum speed for runaway ϖ. Core and halo
components have parabolic form with narrower and wider widths. The Wind
3DP intermediate characterization of the eVDF is performed by a superposition
of core and halo components. The point where equal phase-space densities are
added together is regarded as the hinge.
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explored, but a definitive conclusion was not drawn. This
determination is clearly influenced by the skewness supporting
the heat flux.

A cut through a typical eVDF at 1 au, shown in Figure 10, is
indicated for electrons moving along the magnetic field
opposite to the heat-flow direction. In this direction the
modeling of the strahl is not involved. The hinge point at ν=
determines the associated dimensionless kinetic energy
 2n== = identified in Scudder (2022a). Other labeled speeds
correspond to the spectrum’s inflection point νI and the
minimum speed ϖ for runaway identified by Dreicer.

Electrons with speeds ν� νϖ are underdamped runaways;
they correspond to contributors in the integrand of
Equation (12) near θ= 0. As is emphasized in this graph the
inflection point and hinge point have speeds in excess of the
minimum at ϖ required for runaway. The ν= point on the
eVDF has the opposite curvature of the negative curvature of
eVDF at the runaway minimum speed νϖ needed for measuring
E∥ (Scudder 2022a). Thus, geometrically ν=� νϖ.

In the first exploration of the SERM-I’s premise its
implications were explored assuming the building blocks of
the eVDF were disjoint Gaussian components, assumed
continuous at Dreicer’s v; that model was constructed without
independent knowledge of  (Scudder 2019c) or of the
hierarchical organization of the three important values of ν
shown in Figure 10 identified when determining  from the
eVDF (Scudder 2022a).

For simplicity, SERM-I modeled a leptokurtic eVDF without
a hinge, since it had assumed  = v= . Despite this model’s
predictive characteristics it was not known when producing
specific regimes of δ and τ by this early version of SERM
whether the specific values of  supposed were quantitatively
the correct, rather than approximate, local values involved!

With the intervening work  has been determined for the
Wind data set by identifying ϖ based on the properties of the
eVDF’s curvature. These new local measurements were
quantitatively certified by comparing with independent pres-
sure gradient information (see Figures 20 and 21 of
Scudder 2022a). The detective work identifying  also
established that ν= > νϖ, as shown in Figure 10.

As a result, an improved version, SERM-II, is presented in
this paper consistent with the corroborated  that produces a
more accurate leptokurtic model with a viable hinge point. This
choice protects (i) consistency with externally corroborated,
locally appropriate values of  ; and (ii) produces better eVDF
fidelity for inferring the ratio of partial pressures between
thermal and suprathermal components.

8. Properties of the Electron Hinge

While preparing SERM-II a survey of the 4 yr Wind 3DP
relationships between the lowest kinetic energy for runaway,
v, and = was undertaken. These data were used in Figure 11
to statistically determine the relationship between  v ( )
(Scudder 2022a) and the mathematical location of =, where
equal contributions were observed from the primary thermal
(core) and suprathermal (halo) components.

The column-normalized quantities were analyzed to extract
the functional dependence of the variation indicated by the red
line, reflecting

  4.16 0.48 . 16 v + v= ( ) ( ) ( )

This regression and the data clearly show that the hinge energy
= depends on the size of v, which is determined by the size
of  . At this level of modeling, the energy equivalent of this
offset is constant in local thermal speed units across the Wind
data set. At present, the size of this offset is a 4 yr empirical
result used by SERM-II, with a possible interpretation
discussed next.

9. Interpretation of  <v =

As mentioned above, Dreicer’s inference of bifurcation is the
result of simplifying the electron–electric field interaction by
ignoring the velocity space diffusion, which generally grows
for overdamped trajectories with increasing proximity to the
separatrix identified and weakens with distance above the
separatrix along underdamped trajectories. Thus the separatrix
is permeable to the random walks allowed by the full Coulomb
treatment.
Dreicer’s analysis made approximations when identifying

the minimum kinetic energy v for runaway and the patterns in
Figure 1 above. Omitted from that analysis was the description
of diffusive scattering that is pivotal to predicting the actual rate
of electrons migrating between the cyan and green integral
curves identified by ignoring this process.
The experimental results from Figure 11 suggest than an

energy gain in the range of (3.68–4.64)kTe is required to be
transferred by the electric field to the fastest underdamped
electrons before they are no longer distinguishable from the
more pervasive underdamped electrons that arrive, staying on
green integral curves from very large negative values of Vx.
In this picture this corresponds to an increment of
speed Δv; (1.16–1.37)ϖ that implies total speeds of
ν=; (2.16–2.37)ϖ. After achieving these speeds these emer-
ging electrons at ν= experience only 7%–9% of the weak
friction they had overpowered when arriving at the separatrix
from below.
It is likely that the spectral transition between f v( ) and
f =( ) in Figure 10 reflects the nearly complete dispersal and

assimilation of those emerging underdamped electrons onto the
runaway trajectories.

Figure 11. Evidence for the observed strong linear correlation between
  4.16 0.48= + v= and summarizing E∥ determinations (Scudder 2022a)
and hinge-point locations from over 279,000 eVDF across 1995–1998, using
the processed Wind data products (Salem et al. 2021) from the 3DP
investigation (Lin et al. 1995).
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10. SERM-II Analysis with Hinge

In the wind’s rest frame the even part of the overdamped part
of the eVDF is assumed across all v to have the form
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The even part across all v of the underdamped component has
the assumed form
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At a dimensionless speed ν= the cold and hot component
have the same value:

f f e , 19c hn n a= == =
- =( ) ( ) ( )

determining the hot contribution with one less free constant:
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Dreicer’s runaway density fraction δ involves

n

n
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determined by Equation (12). Since the eVDF is a sum of two
Gaussians, xMaxd ( ) occurs twice in δ with different arguments
x:
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The strahl does not participate in determining the runaway
fraction δ3DP since it has been shown (Scudder 2022a) to reside
fully inside even the narrower separatrix determined by Fuchs
et al. (1986).

For computational precision, the second term in the
numerator of Equation (20) needs to be recast:
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Given the calibration curve (Equation (14)) for δ*(ϖ), the
SERM value for τ(ϖ) is determined implicitly by

, , , 25SERM Model Max 0.893d v v t v d v==( ( ) ( ))) ( ) ( )

provided Equation (16) replaces = with the documented
dependence on ϖ; that is,
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11. Inferring SERM-II eVDF from Fluid Variables

Upon solving Equation (26) (and showing uniqueness) a
correspondence exists between the even electron fluid moments
and the local shape parameter characterizations of the SERM-II
eVDF, and finally the shape factors of the two Gaussian
subcomponents of the nonthermal eVDF:

  

n U P

n n T

, , ,

, , , , , , , . 27
e e e

e c h c h

, 

v d t


=

{ }
{ } { } ( )

Typically solutions must be found for an allowable
uncertainty spread of =, shown in Figure 11; when these
solutions are averaged the cited best expectation, τ, is the
defined average. The variances across these estimates are used
to form the indicated error bars about τ, trace indicated in
Figure 13 below.
These newly found 1:1 SERM constitutive relations for δ, τ,

and e with  are illustrated across a broad range of expected
values in Figure 12 and at higher resolution in Figure 13. These
relationships will be referred to as SERM constitutive
relationships. Clearly the SERM-I and SERM-II eVDF
solutions are leptokurtic (τ� 1) and by construction are
compatible with Coulomb collisions and Dreicer’s insight via
the local size of  . SERM-II estimates include the refinement
of a hinge point at its statistically observed location  v =( ) ,
above the minimum runaway boundary of v.
By eliminating the  dependence, correlations between

SERM-II shape variable pairs can be inferred. These correlated
shape pairs imply correlations between the eVDF’s reported fit
shape parameters that have long been known (see Figure 4) in
solar wind observations, but were only provided with their first
explanation with SERM-I (Scudder 2019c).

Figure 12. 1:1 functional dependence of  , ,e t d{ } on  . The SERM
contributions to e shown here will be modified further when SERM odd-
moment signatures are included. A useful connection to other observables is
the relationship 2Pe  , where Pe is the mean free path for the thermal-
speed electron in units of the electron pressure gradient scale, also known as the
pressure Knudsen number.
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To solidify the quality of the SERM-II model’s precision, a
magnified portion of Figure 12, presented in Figure 13,
illustrates the nearly perfect correspondence between (i)
underlying red curves for SERM-II theoretical parameters
versus newly measured  and the superposed (ii) statistical
summaries of the same properties from Wind-3DP data
indicated by cyan dots for  Th c and green dots for Dreicer’s
runaway density fraction, δ3DP.

Because the reasons for E∥≠ 0 are as generic as the
conditions of astrophysics, the in situ documentation of
Figure 13 is a strong argument that such behavior is expected
to occur in virtually all fully ionized astrophysical plasmas.

12.   P N, , , , , ,E E Ev d t ={ } (NC,NH, TC, H)

Given an electron fluid characterization, the present SERM-
II model allows one to suggest the even moments of the
requisite eVDF in terms of two superposed Gaussian distribu-
tions, thus completing the last stage in Equation (27). This
approach gives a likely nonthermal eVDF consistent with
quasi-neutrality, the Coulomb cross section, and the modeled
fluid’s moment behavior.

SERM-II applications in this vein (i) could be determined
from empirical suggestions of remote fluid properties or the
output of fluid solutions for the plasma at the two-fluid level.
Those of the second type would allow (ii) conducting a
complete justification of closure (see Scudder 2019b) that could
validate or contradict the approximations made to produce
closures used to truncate the infinite set of equations required to
formally replicate the kinetic equation.

Either focus requires estimating  where the fluid moments
are known. Knowing fluid spatial profiles, this may be done
using the electron momentum equation. If the moments are
known only in isolated locations the little used, but well
known, relationship between  and the pressure Knudsen
number (see Equation (2) of Scudder 2019a) can provide the
necessary estimate. In either instance estimating  determines
v, which constrains = using Equation (16). Together, all of
these relations allow estimates of δ and τ to be inferred by
interpolating their traces as functions of r ( ), shown in
Figure 12.

12.1. SERM’s Nonthermal Subcomponents’ Shapes from
Electron Fluid Variables

With the knowledge of rt ( ( )) the free parameters of
SERM-II’s two isotropic Gaussian subcomponents for the
underlying eVDF can be determined using
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and Equation (29) below.
When τ ↓ 0 the halo density fraction is 100%, but when τ ↑ 1

the core and halo fraction approach 0.5, since in this regime the
superposed core and halo are identical, each contributing half
the total density. This regime is hardly ever expected since it
requires 0 = , which is virtually impossible in the inhomo-
geneous plasmas of astrophysics.
The runaway density fraction, δ, is not determined by

knowing both nh and nc, but is available from the calibration
curve in Figures 12 and 13, once  is available.
The thermal and suprathermal temperatures of the form

(−dE/dlnf ) are constrained by the total pressure, Pe, to be
determined as
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The ratio of partial pressures of the two components is
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Equations (28) and (29) provide sufficient information to
make an even two-Gaussian mathematical model of the
suggested eVDF compatible with the input two-fluid moments,
Coulomb cross section, and quasi-neutrality. SERM-II does not
yet support a heat flux, but it will soon (J. D. Scudder 2023, in
preparation).
These equations represent SERM-II’s deconstruction of the

two-fluid moment profiles, producing a positive definite,
nonthermal eVDF containing zeroth, second and fourth
moments, and all even moments. These leptokurtic distribu-
tions have the same total density and electron pressure as
implied by the fluid model.

12.2. Inferring the eVDF for the Two-fluid Solar Wind Model

As an example of SERM’s application, the two-fluid profiles
of solar wind density, electron pressure, and flow speed are
reproduced in Figure 14 from digital files shared by Chandran
et al. (2011). The solar wind solution incorporated a low-
frequency treatment of reflection-driven, Alfvén-wave-turbu-
lent, dual-energy equations closed by a two-zone heat-flow
closure for electrons, ion heat-flux closure, and ion anisotropy
limiters based on collisionless kinetic theory.

Figure 13. Documentation of Dreicer bifurcation of the observed solar wind
eVDF in the measured solar wind E∥. This SERM-II 4 yr Wind-3DP data
comparison conclusively documents the detection of Dreicer’s bifurcation by
plasma runaway in the solar wind’s observed E∥.
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The solution’s inferred radial profiles for r ( ) are shown
using the electron momentum equation and the SERM eVDF
constituitive relations, r r, 2

 d t- [ ( ( )) ( ( ))], obtained from
Figure 12 by interpolation.

Near the coronal base at H; 0.01 Re 0.01 < is small,
implying the ion collisional drag deceleration there on a
thermal-speed electron was much larger than the electron
acceleration by E∥. In this locale SERM-II predicts only a very
weak, off-scale, density fraction of runaways, δ. In this regime
the very small density of suprathermal electrons has a very high
effective slope temperature. The partial pressure in this sparse
hot component rises nine orders of magnitude between
1.08–5 Re.  increases rapidly with increasing radius,
surpassing 0.1 = by R= 2 Re and unity by 6 Re. This
variation of r ( ) signals the systematic role reversal for the
thermal-speed electron between being heavily overdamped at
low altitudes, approaching underdamped status. Across this
same radial range the hinge point of the leptokurtic eVDF
moves down from 34kTe to 9kTe and the runaway boundary
lowers from 30kTe down to 5kTe. From Figure 10 the phase-
space diffusive transition layer for the eVDF between v and
= raises the fraction of the distribution available to support the
skew for the heat flux. These estimates suggest the fractional
population of nonthermal electrons just above the separatrix are
being strongly enhanced across this transition. This is the radial
zone where wind acceleration is strongest, but is still below the
solution’s Alfvén point. Across this region Chandran et al.
(2011) are using the Spitzer–Braginskii heat closure, which
assumes the eVDF is perturbatively related to a Maxwellian.

Though finite at r= 1.01 Re, the halo-to-core density
fraction δ rises sharply by more than 10 orders of magnitude
across the narrow radial range 1.08–6 Re, where  increases
from 0.1 to 1. The runaway fraction δ rises to nearly 5% by
R= 6, smoothly continuing to rise toward still higher values
(30%–40%) reported by Wind 3DP at 1 au. This strong
increase in halo density fraction occurs where the suprather-
mals are suggested to have slope temperatures nearly 10× that
of the overdamped thermal electrons.

The enhanced density fraction in runaway, accompanied
by coordinated suprathermal partial pressure changes (see

Figures 13 and 15) cause the fourth moment of excess electron
kurtosis e to increase strongly across this same region of the
inner heliosphere shown, as shown in Figure 16.

12.3. Inner Heliosphere’s Radial Gradient of Kurtosis

Figure 16 provides an initial view of the rapidly varying
kinetic changes SERM-II would imply for the inner helio-
sphere. The input for the calculation are the two-fluid profiles
for Pe, ne, and U from a two-fluid solar wind solution
(Chandran et al. 2011). These profiles smoothly connect the
accepted coronal boundary condition to 1 au conditions typical
for a 700+ km s−1 solar wind.
The solar wind expansion above the coronal base is typified

by radially monotonic growth of (i) solar wind speed, (ii)  ,
(iii) δ, (iv) excess kurtosis e, and (v) decay of suprathermal to
thermal slope temperature ratio, τ−2. Above r R4 e  is
surprisingly very nearly the same size as  , with both already

Figure 14. Profiles of electron pressure Pe(r), density ne(r), and flow speed U
(r) from a two-fluid Alfvén-wave-driven high-speed solar wind model
(Chandran et al. 2011). Alfvén point reported at the location of the vertical
cyan line.

Figure 15. Inferred radial variation of , (blue), Pe (red), δ (black), and τ−2

(green) using the SERM-II model, unpacking the information of the two-fluid
variations of the published two-fluid solar wind model of Chandran et al.
(2011). The height of the point of observation above the nominal solar surface
is the abscissa, H = R − 1, where R is the radial distance to the point.

Figure 16. Radial profile of solar wind speed (green), density fraction in
runaway δ (cyan), and electron excess kurtosis e (red). A broad development
is shown of radially increasing  , δ, and e. A strong onset of nonthermal
signatures is seen when 0.1 1   , during the bulk speed U’s acceleration,
but well inside the indicated Alfvén point, RA.
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considered nonperturbative and large. When directly measured
near 1 au these variables show this same strongly correlated
behavior and nonperturbative size as seen in the Wind data (see
Figure 2).

Observations of the eVDF at 1 au since 1968 have shown
omnipresent excess kurtosis, e. The rapid statistical physics
transformation suggested by this fluid solution from Gaussian
forms below R; 2 Re to strongly kurtotic eVDF well below
the sonic or Alfvén point 6 Re is totally new. The rapid growth
of excess kurtosis occurs astride the dominant zone where the
solution’s wind vigorously accelerates inside the Alfvén point.
This kurtosis has been reported by the Parker Solar Probe (PSP)
down to the lowest radius achieved. Unfortunately, the new
suggestions of this paper are for the domain below the PSP’s
minimum perihelion of ;9 Re.

In situ model-independent heat-flow observations in the solar
wind are dominated by the pear-shaped, skewed asymmetry of
the phase space at suprathermal energies; the magnitude of the
heat flow varies directly as the number of charge carriers
available to transport the energy asymmetry. The suggested
strong variation of the excess kurtosis below the Alfvén point
appears to suggest that the radial variation of this kurtosis could
impact the divergence of the heat flows that do occur.

The fluid equations solved to obtain this model’s profiles
were totally unaware of the role of electron kurtosis or the
strong transformation of the kinetic character just suggested by
SERM. The modeled two-fluid equations were closed at the
third-moment level involving the heat flux; when formulated
the heat-flux model adopted was known to be inappropriate. Its
use provided a rationale for closing the infinite set of
equations, despite avoiding a justification for their suitability.
While the solution emphasized the role of Alfvénic acceleration
of the wind, it had incorporated a Spitzer–Braginskii (Spitzer &
Härm 1953; Braginskii 1965) heat-flow closure to make this
study at the fluid level. As used, this closure involved relying
on an eVDF that possessed negative phase-space probabilities
(eVDF< 0; see Scudder 2021). The interval of this defect is
shown in Figure 15. The modeled heat flux used to truncate the
fluid equations was not adequate either (i) to truncate the
moments of the kinetic equation, or (ii) or evaluate whether
physically described heat flow could be important for under-
standing the solar wind expansion. As further support for this
argument, the strong onset of kurtosis suggested by SERM
occurs across the same radial domain where Spitzer’s heat law
was used beyond its validity (see Figures 15 and 16).

13. Discussion and Conclusion

The fidelity of SERM-II’s prediction of ambient wind
properties over a 4 yr data set has been demonstrated in this
paper. By virtue of passing these tests SERM’s primary thesis
of the role of Dreicer runaway physics in the solar wind is
strongly supported.

The suggestions of SERM as developed by the end of this
paper is that the lowest-order eVDF for the plasma supporting
the observed solar wind profiles must be leptokurtic since E∥ is
always required to make the solar wind expansion quasi-
neutral.

This paper has also documented 4 yr of empirical support for
the SERM model’s accuracy when partitioning the electron
fluid’s pressure and density between thermal and suprathermal
components.

Quantitative evidence has been supplied that a steady variant
of Dreicer’s runaway physics is the causal agent of the
ubiquitous leptokurtic eVDFs that have now been measured in
the solar wind for 54 yr and only recently explained with
SERM (Scudder 2019c).
These findings represent striking and promising departures

from the traditional theoretical assumptions that attempt to
model the observed solar wind eVDF as a perturbatively
modified Maxwellian that alone has zero excess kurtosis and
transports no heat.
The heat-flow moment depends on the skewness of the

eVDF; observationally, the skewness depends directly on the
density of heat carriers and the distribution of heat energy
transported. Observed eVDFs with model-independent assays
of the heat flow demonstrate that the density of heat carriers
and heat energy moved are predominantly supported by the
nonperturbative, nonthermal part of the leptokurtic eVDF.
The much needed and overdue improvement in the heat laws

used for modeling the solar plasmas must provide a
nonperturbative recipe both for (i) the promotion of part of
the plasma to be nonthermal, and (ii) for the skewed energy
support of the heat that flows.
This paper has shown the SERM-II model is fully capable of

suggesting the rationale for this first improvement. The sequel
(J. D. Scudder 2023, in preparation) will discuss surmounting
the second hurdle by producing a nonperturbative formulation
for the plasma heat law that incorporates the work of Dreicer
and SERM-II.

The author acknowledges the use of reduced data products
from the Wind 3DP experimental team, led for many years by
the late Principal Investigator R. P. Lin, and the cooperation of
C. Carlson (deceased), J. McFadden, D. Curtis, D. E. Larson,
and their collaborators. These data would not have been
possible without the dedicated late Wind Project Scientists: K.
W. Ogilvie (Wind S/C) and M. H. Acuña (GGS) who realized
the Wind mission despite budget, mechanical, radiation, and
harness fire challenges. The used 3DP Wind data has benefited
from the prior careful Wind 3DP detector inter-calibrations by
D. E. Larson, J. McFadden, M. Pulupa, C. S. Salem, L. Wilson
III, as well as the ongoing stewardship of the current Wind PIs,
S. D. Bale (3DP), A. Szabo (MAG), and current Wind Project
scientist, L. Wilson, III. The reduced Wind 3DP reduced data
products 1995–1998 have been discussed and published
previously (Salem et al. 2021). They were supplied digitally
by C. S. Salem, and used as inputs for the new theoretical tests
discussed here. The data use is fully consistent with NASA’s
Open Data Policy. Digital profiles for Figure 13 came from the
Chandran et al. (2011) fluid solution and were kindly provided
by B. Chandran. Figures 14 and 15 reflect the results of SERM
post-processing of the two-fluid supplied digital files. The
analysis presented in this paper was a part of that outlined in
the proposal funded as NASA Award grant No.
80NSSC19K1114 to the University of Iowa, recently trans-
ferred to Space Science Institute, Boulder, Co. as NASA
Award grant No. 80NSSC22K1278.

Appendix A
Wind 3DP Characterization of Electron eVDF

The Wind 3DP electron data have been processed both as
a model-independent 3D eVDF and as a superposition of
three modeled subcomponents: a low-energy-range convected
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bi-Maxwellian, usually called the core, a higher-energy
convected bi-kappa distribution, called the halo, and a
characterization of data not well fit by these two best fits that
is the basis for the strahl characterization (see Salem et al.
2021). These separate components are modeled in super-
position and given their own velocity space moments described
in the ion frame of reference, having inertial velocity U. As the
strahl is a modest, but highly angular, augmentation of the core
population along the heat-flux direction of the magnetic field,
the core and halo eVDFs are the principal determinants of the
nonthermal even-moment properties of the electrons.

Since the core and halo populations are rarely very
anisotropic, all temperature moments used when applying
SERM-II come from one-third the trace of the gyrotropic
quantities.

Although well known, much of the modeled halo in the
superposed eVDF resides in the core low-energy range. Thus
integral properties like the halo fit density are higher than the
density of halo component electrons outside the energies where
the modeled core dominates the composite eVDF. Further,
neither of these quantities is the density of electrons involved in
the Dreicer runaway that are computed for this paper.

A similar issue pertains to the halo temperature. As usually
reported, it is the mean proper frame energy averaged over all
speeds for the halo fit. It is not the mean energy of those
suprathermal electrons found outside the domain dominated by
the core fit. For the considerations below the best-fit observed
kappa distribution is sampled for this paper above the runaway
threshold and assigned a best-fit h from a fit of these phase-
space readings to a Maxwellian across the suprathermal
domain. This characterization is for the purposes of comparison
with the SERM model, which at the present level of
development (SERM-II in this paper) assumes a superposition
in the ion rest frame of two nondrifting Gaussians supporting
the nonthermal distribution that dominate the eVDF density
and partial pressures. This will be improved in a subsequent
development that addresses odd moments.

Appendix B
Fuchs et al. (1986) Updated Description of Runaway

Several decades later, Fuchs et al. (1986) made a more
complete investigation of the runaway bifurcation illustrated in
Figure 17. For clarity the integral curves have been omitted.
This figure shows both the separatrices (yellow with black
dashes) according to Dreicer’s formulation and the richer
separatrix structure found by Fuchs et al. (1986). Dreicer’s
formulation only tracked the impact on the integral curves of
ion energy loss and electric acceleration.
Fuchs et al. (1986) incorporated energy loss for electrons in a

form that was faithful for this exchange when it occurred in the
nominally runaway regime. Their analysis showed two
important changes: (i) the tear-dropped blue separatrix, which
is the analog of Dreicer’s parabola, is now totally bounded; (ii)
a second red separatrix occurs crossing the blue separatrix at a
saddle point SF. The integral curves have the same topology as
Dreicer.
The analogues of Dreicer’s cyan integral curves circulate

within the blue separatrix; when starting to the left of the red
separatix the circulation peaks along the red separatrix and is
then guided toward the origin. The integral curves starting to
the right of the red separatrix (but still within the blue
separatrix) produce a counterclockwise circulation peaking
along the red separatrix below the saddle point SF and then
converging back on the origin.
The analogues of Dreicer’s green integral curves start at

large negative Vx outside the blue separatrix; when approaching
the red separatrix the integral curves are deflected to flow along
but outside of the red separatrix. An apparently distinct group
of integral curves start at Vx> 0. For Vx<ϖ these curves
initially decelerate in Vx but have a growing Vy. These curves
approach the red separatrix from below and are then guided by
the red separatrix to large Vx. Stream lines with initial
coordinates Vx�ϖ, Vy= 0 rise toward the red separatrix
without decelerating; approaching the red separatrix the level
curves are then guided to very large Vx. Sketches of these
integral curves can be found in Fuchs et al. (1986).
The topology of Fuchs et al. and Dreicer are analogous. The

underdamped curves circulate through the origin. They remain
separated from those that start outside the inner separatrix that
now have two different Vx sites of origin. The analogy is
perhaps seen better by realizing that in Dreicer the red Vx>ϖ,
Vy= 0 segment in Figure 1 is the analog of the included red
separatrix in Fuchs et al. (1986) above the saddle point at SF. In
both models the runaway integral curves are guided to be
asymptotically parallel to this ray/curve.

Appendix C
Full Dreicer Formulae

Dreicer’s variables and abbreviations used in the text are
fully defined here in terms of customary CGS variables. The
variable ED used in this paper and Ec by Dreicer (1959, 1960)
are identical. The lnL expression alone is written in terms of
temperature e in eV units rather than in CGS units, which is

Figure 17. Labeled boundaries in hydrogenic plasma with the same  for (i)
Dreicer (1960) and (ii) Fuchs et al. (1986) integral curves considering E∥ with
(i) ion drag only, and (ii) ion drag and energy loss. Both show two intersecting
separatrices: (i) v⊥ = 0 and yellow–black dotted parabola, (ii) blue pear-shaped
curve and red curve rising from |v| = 0. Both models show (a) a node in
integral curves at |v| = 0, and (b) saddle points where separatrices intersect, SD
and SF. Topologically the integral curves of both models are the same, despite
relocation of the saddle point.
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The form above for ln lnc
e iL º L- provides a continuous formula

across the quantum-mechanical regime, 10 eVe  , and
represents an essentially equivalent form to two separate
equations (Fitzpatrick 2015, Equation (3.124); also Spitzer 1967)
needed for solar wind plasmas.
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