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ABSTRACT

This paper outlines the rather narrow conditions on a radiatively decoupled plasma where a Maxwell–Boltzmann
(MB) distribution can be assumed with confidence. The complementary non-thermal distribution with non-
perturbative kurtosis is argued to have a much broader purview than has previously been accepted. These conditions
are expressed in terms of the electron Knudsen number, Ke, the ratio of the electron mean free path to the scale
length of electron pressure. Rather generally, f (v < v2(Ke)) will be Gaussian, so that MB atomic or wave particle
effects controlled by speeds v < v2 ≡ w(15/8Ke)1/4 will remain defensible, where w is the most probable
speed. The sufficient condition for Spitzer–Braginskii plasma fluid closure at the energy equation requires globally
Ke(s) � 0.01; this global condition pertains to the maximum value of Ke along the arc length s of the magnetic field
(to its extremities) provided that contiguous plasma remains uncoupled from the radiation field. The non-thermal
regime Ke > 0.01 is common in all main-sequence stellar atmospheres above approximately 0.05 stellar radii from
the surface. The entire solar corona and wind are included in this regime where non-thermal distributions with
kurtosis are shown to be ubiquitous, heat flux is not well modeled by Spitzer–Braginskii closure, and fluid modeling
is qualitative at best.
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1. INTRODUCTION

A central assumption in studies of stellar atmospheres is
that their velocity distribution functions (VDFs) f (v) can be
modeled reasonably well by a Maxwellian distribution, fMB.
Three important examples that rely on this assumption are
(1) the development for extended stellar atmospheres of closed
fluid models, whose existence relies on the self-consistency of
the Spitzer–Braginskii (SB) closure relations for a strongly
magnetized plasma; (2) the inference of density and tem-
perature information from emission line measurements; and
(3) wave/turbulence normal mode determinations and their col-
lisionless damping properties using the plasma dielectric.

If the Maxwellian assumption were no longer justified, it
would have profound implications on the above studies. The
construction of stellar atmosphere models and the chain of
arguments leading to the conclusion that the observed thermal
inversion of the corona requires a heating source are predicated
on the validity of the SB closure model, and its suggestion
that heat diverges from the temperature maximum flowing
alternately toward the transition region and toward 1 AU. That
surety would be withdrawn. The breakdown of the SB-based
heat transfer model has the immediate consequence that the
thermal inversion can no longer be equated to the need for
a heat source, opening the door to alternative explanations.
Generalizing the transport description implies that heat can
sometimes flow up temperature gradients (Olbert 1983; Dorelli
& Scudder 1999, 2003; Landi & Pantellini 2001), and be
influenced by other gradients of fluid moments including the
density and magnetic field strength (Scudder & Olbert 1983),
possibly increasing the flow of heat into the regions where the
corona is hottest. Preliminary work on these generalizations
also shows that the determining factors for heat conduction may
be distributed along the field line in a global way and have a

decidedly different structure from Spitzer’s local dependence on
temperature gradient. Admitting that SB has collapsed implies
that one cannot inventory the dominant process (conduction or
waves) in setting the coronal temperature maximum while using
the broken closure formalism.

For emission lines, the Maxwell–Boltzmann (MB) assump-
tion allows detected lines and ratios of intensities to act as ther-
mometers and assays of ambient density. The information in
line spectra relies on modeling the rate integral over the dis-
tribution function times the known energy dependence of the
atomic cross section. Without the MB assumption the lines be-
come degenerate with a range of non-Maxwellian distributions;
once the MB template is removed, the thermal–non-thermal de-
generacy is compounded further for the ambiguity of what the
most likely distribution function should be. Even the experi-
mental inference that there are organized “turbulent” flows in
the corona relies on interpretation of line profiles as if they must
be Maxwellians, but widened in a self-similar way by the turbu-
lent flow field. Most honest descriptions of turbulent broadening
acknowledge it as a bandaid to fit the data (that could equally
be ascribed to a non-thermal distribution; Scudder 1992). Alter-
natively, non-thermal interpretations of the excess width of line
profiles would be allowed if Maxwellian postulates were not
proscribed. Turbulent heating models of solar corona and asso-
ciated wave damping studies rely heavily on the assumption of
Maxwellian distributions. The identification of modes that can
carry energy, rather than become evanescent, the quantitative
size of non-resonant damping, and the vagaries of non-linear
cascades that depend on which wave modes can propagate de-
pend in general on f (v) at all v and its moments, while the
damping decrement depends on the slope of ∇vf (v) near the
phase velocity. The Maxwellian VDF with its exponential de-
pendence on energy predicts some modes to be evanescent,
while they might be only lightly damped if a non-thermal tail
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Figure 1. (a) Knudsen number variations for (1) ν2 (blue), below which (Layer I)
two or more collisions per scale take place; (2) νq (green), the minimum speed
range (Layer IV) where SB closure scheme at the energy equation requires
Coulomb effects sufficiently vigorous to keep f (ν � νq ) perturbatively close
to a Maxwell–Boltzmann distribution; and (3) νD (red), the minimum speed
driven into runaway (Layer III; discussed in Section 3). Knudsen numbers
where ν2(Ke) � νq determine maximum Knudsen number, K∗

e � 0.01 (green
dot), where SB closure relation is self-consistent. Layer II is the complement of
these definitions and resides between ν2 and νD relationships. (b) Local density
fraction Fj from the Layers I–III in panel (a).

(A color version of this figure is available in the online journal.)

were considered. A related point is that the number of reso-
nant particles can be different with the non-thermal distribution,
making the importance of damping or propagation based on
MB assumptions increasingly problematic. The degree of the
deviation from a Maxwellian that can be tolerated while de-
riving information remotely depends on the particular physics
under consideration. Indeed, emission lines with different speed
thresholds in the same plasma could be responding differen-
tially to the non-thermal content present in the plasma if these
thresholds straddled the thermal–suprathermal layer boundary
(ν2(Ke)) we develop below in Figure 1.

Furthermore, we develop the perspective that the regime
of the Maxwellian is a very narrow one in astrophysical
plasmas, that is, supplanted by a more typical non-thermal
distribution that has kurtosis that a Maxwellian does not have.
This is shown by developing conditions for the validity of the
Maxwellian assumption for these three important problems in
stellar atmospheres. Remarkably, we find that the validity for the
MB assumption is controlled by the size of a single parameter,
the electron Knudsen number Ke, as shown in Figure 1. Ke is the
electron mean free path divided by scale length of the gradients
of the moments (we have chosen Pe to be specific) and is shown
to be equal to another quantity of importance in plasma physics,
the ratio of the parallel electric field to the Dreicer electric field.

We show here that there are three markers in velocity space
controlled by Ke (Section 2; Figure 1(a)) that characterize

the properties of the distribution function as they relate to
transport models, dispersion properties, and sensitivity to atomic
processes (e.g., impact ionization, recombination) for producing
emission lines. In turn, these three markers allow a meaningful
separation of the velocity space into thermal, non-thermal,
and runaway “layers.” Using these layers, three regimes of
Ke are identified (Sections 2–4; Figure 1(b)) based on the
relative density of electrons that occupies these three layers. In
particular, the fluid closure founded on SB requires Ke < 0.01;
even more disconcerting is the realization that not only must Ke
be this small locally, it must be bounded across the entire system
to which the modeled region is connected by the magnetic field
where the plasma remains decoupled from the radiation field.
We are then able to derive simple conditions (Section 3), relying
only on parameters measurable from remote observations, to
map out the regime of validity of the MB assumption for these
problems of interest.

SB and the usual fluid treatment for a plasma is found to
be self-consistent only if Ke < 0.01 globally, i.e., along the
entire flux tube connected to the volume being modeled. As
the first of several applications of this condition, we show in
Section 4 that the main-sequence (MS) stellar atmospheres all
violate this condition very low in their extended atmospheres
and always below 0.05 stellar radii above the radius where
the radiation field and plasma decouple. This regime, which
includes the entire solar corona and wind for our Sun, is shown
below to be the domain where non-thermal distributions should
be ubiquitous, SB closure fails, and fluid modeling is qualitative
at best. Interpretation of emission spectra based on the MB
assumption are suggested (Section 3.2) to be most appropriate
when the line’s energy threshold speed v∗ for the atomic physics
(e.g., (1/2)mv∗2 = E∗ at ionization threshold) satisfies the
condition v∗ < v2(Ke).

Finally, dispersion and damping estimates based on MB
shapes are found (Section 3.3) to be valid when the phase
velocity or non-resonant interaction occurs below v2(Ke). In
the VDF f (v > v2(Ke)) non-thermal behavior is expected, if
this region is occupied. Clearly, collisionless damping in these
regimes will weaken with a shallower slope on f (v), but will
have more particles for resonance at phase speeds vφ > v2(Ke)
than an MB of equivalent density and pressure.

Subsequently, we determine (Section 5) the radial profile
of Ke for two recent models of stellar-solar wind atmospheres
that reproduce the radial profiles of the solar atmosphere. Both
solutions locally violate the consistency condition of SB. Both
solutions violate the global requirement for SB self-consistency
and also vacate the premise of their closure structure by using
alternate heat laws for part of the radial domain assuming that
the structure of the fluid equations remain unmodified. The two
solutions compared also show Ke > 0.01 about 0.0023 stellar
radii above the chromosphere, consistent with our modeling
(Section 4), suggesting where the solar non-thermal transition
should occur.

Since the issues of the self-consistency in the closure are
most demanding when describing the electron heat flux, we
concentrate on the collisional physics for electrons. We adopt
the conventions of using the dimensionless velocity ν ≡ (v/w),
where w is the thermal speed, which for a Maxwellian has the
size w = √

2kT /m, and using unsubscripted fluid variables
for the electrons as in T = Te, m = me, and w = we.
As w is also the most probable speed of a Maxwellian, we
use w as the most probable speed below when considering
non-thermal distributions. Thus for the commonly used kappa
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function f (v) ∝ (1 + (v2/κw2))−(κ+1), w will remain the
most probable speed of that distribution, while its temperature
kT ≡ (P/n) = (κmw2/2κ − 3).

The remainder of this paper is organized as follows. Section 2
describes the development of the ideas and the derivation of the
velocity space marker conditions for our proposed remote test
of the MB approximation. Section 3 summarizes the results in
easy form that can be used by to test the validity of fluid models
or experimental interpretations of emission line observations
or plasma dispersion estimates. Section 4 illustrates common
properties of Ke(r) model isothermal atmospheres along the
MS of stellar evolution, showing that non-thermal physics
is important in all MS stellar atmospheres outside of 0.05
stellar radii from the boundary where the plasma and radiation
decouple. In Section 5, we apply our tests to the output of current
solar wind fluid models determined from equations closed under
the SB premise; both show that indeed the global condition
Ke < 0.01 is violated low in the corona as predicted for MS
stars. Summary and discussion follows in Section 6.

2. THE DERIVATION OF THE THREE SPEED MARKERS

In this section, we derive the three speed markers in veloc-
ity space that lead to the conditions for the validity of MB
approximation. The first two markers νq (Section 2.1) and ν2
(Section 2.2) arise from considerations of the SB model and
Coulomb properties, whereas the third marker, νD (Section 2.3),
is based on the consideration of runaway physics, a phenomenon
peculiar to scattering in plasmas. An overview of the suggested
evolution of the lowest order distribution function as Ke in-
creases is assembled in Section 2.4. We use Figure 1(a) to relate
the analytical conditions that are being developed. At each Ke
there are usually three intervals in ν: Layer I below ν2 loosely
termed the “thermals” in the following; Layer III above νD

loosely termed the “runaways” below; and Layer II sandwiched
between the ν2 and νD curves, referred to as the “non-thermals”
below. As Ke increases, the width of Layers II and III change,
with their lowest extremities trending down to smaller values
of ν. The next two sections establish from collisional theory
the boundaries associated with νq, ν2. The intersection (green
circle) of the heat flux condition (the green line νq) and the
sufficient collisionality condition (blue curve ν2) determines the
allowable global maximum Knudsen number K∗

e (blue vertical
dashed line) where SB is self-consistent. As we proceed through
this section, the other curves of this and the companion panel
(Figure 1b) will shortly be integrated into the development.

The SB model aims to produce an accurate fluid description
of the plasma for all moments up through the heat flux. SB
is a perturbative model for correcting the local Maxwellian
distribution to reflect weak, localized communication with its
surroundings. Since there is no heat flow associated with a
Maxwellian distribution, the heat flow in SB comes strictly from
the perturbation δf . Thus the first condition for the validity of
SB is that (i) δf (ν)/fMB(ν) 	 1 over the range of velocities
necessary to determine the heat flux, where νq is determined
as the finite upper limit of this range, given that its speed
dependence is a given of the SB model. The second condition for
the validity of SB is that (ii) there must be sufficiently vigorous
collisions to keep f (ν < νq) essentially Maxwellian. This leads
to the second velocity marker v2(Ke), which is a function of
the Knudsen number and is the upper boundary of the sphere
in velocity space where self-Maxwellization is well under way,
hence named the “thermals.” The critical maximum size K∗

e

where SB remains valid is determined by the last Ke where
ν2(Ke) � νq . This condition ensures that a Maxwellian will
be a good zeroth-order estimate for the distribution function,
and the heat flow moment will accurately be given by Spitzer’s
Fourier law form. Otherwise, SB closure collapses, the structure
of the fluid equations for the plasma becomes unknown, and the
heat law is not even qualitatively known.

2.1. SB and the Heat Flux Requirement: νq

The mathematics of the SB method and the structure of the
kinetic equation dictate the velocity space dependence of the
corrections δf (v, x) to fMB that support this weak gradient
transport. In this approximation, δf takes on the separable form
of

δf (v, x) = α(x)fMB(ν, x)
2∑

j=0

γj (ν)Pj (cos θ ), (1)

where Pj is the jth Legendre polynomial. The only odd parity
part of the perturbation, δfodd(v), controls the parallel heat flux
and possibly current; it is required to have the form

δfodd(ν, θ, x) = α(x)fMB(ν)

(
−5

2
ν + ν3

)
P1(cos θ ), (2)

where θ is the pitch angle of the particle. It is important for what
follows to note that this perturbation is separable between x and
v spaces since α(Ke(x)) controls all spatial dependence and
the local strength of the heat flow through its Knudsen number
dependence which is finally proportional to ∇T (Tanenbaum
1967), a circumstance that is only true for a lowest order MB
distribution (Scudder & Olbert 1983).

The heat flux q‖ is defined as the third moment of the
distribution function; for a gyrotropic distribution function this
takes the form

q‖ ≡ 2√
π

∫ ∞

0
dν

∫ 1

−1
d cos θf (v)

1

2
mw3ν5P1(cos θ ) (3)

q‖ ≡
∫ ∞

0
dνGq‖ (ν) = −κ(T )b̂ · ∇T . (4)

Here κ is the thermal conductivity and Equation (4) restates
Spitzer’s familiar recovery of a Fourier’s law form for heat
conduction in a plasma. In Equation (4), the speed integrand
has the form

Gq‖ (ν) = α(x)2nmw3

3
√

π
exp(−ν2)

(
−5

2
ν6 + ν8

)
, (5)

shown in Figure 2 (black). Equations (4) and (5) are the result
of the pitch angle integration for the heat flux, noting that fMB
has no angular dependence and thus supports no heat flux; the
parts of δf that involve even Legendres do not contribute to the
odd parity heat flux moment, since they are orthonormal to
the P1 weight of the heat flux moment on [0, π ].

Because Gq‖ (ν) changes sign under the integrand of
Equation (4), it is difficult to estimate how the speed integral
over Gq‖ saturates to a final value. The self-consistency of the
SB approach requires that this saturation occurs while the cor-
rections in δf (ν) at different ν’s to fMB(ν) remain perturbative.
Thus, the requirements are that (1) δf (ν)/fMB(ν) 	 1, and that
(2) the first condition is enforced for a range of speeds
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Figure 2. Dimensionless speed dependence of the integrand Gq‖ (ν) (ignoring
units) for the heat flux moment (black), the partial heat flux integral Q(ν) (red)
of the illustrated Gq‖ (ν′) over the range 0 � ν′ � ν, and the total parallel heat
flux q‖ (blue). The convergence of Q(ν) → q‖ defines νq (green dot, flanked
by uncertainty indicated by vertical green dashed lines) as the upper limit of the
minimum speed interval that must be dominated by Coulomb collisions for SB
to be self-consistent.

(A color version of this figure is available in the online journal.)

0 � ν � νq sufficiently broad to estimate the integral for q‖
as the partial integral over the finite interval [0, νq], viz,

q‖ �
∫ νq

0
Gq‖ (ν)dν. (6)

Finding such a νq < ∞ allows SB self-consistency at finite
Ke outlined below (cf. Equation (13)). The possibility of this
finite limit is connected to the dominance of the exponential
in this integrand. Provided δf (ν)/fMB(ν) 	 1 is only violated
algebraically, i.e., weakly, such a looser requirement will allow
the theory to make estimates in slight gradients.

Performing the indicated partial integration, the condition
of Equation (6) becomes a search for the solution νq to this
equation:

q‖ � Q(νq)

= α(x)
nmw3

24
√

π

(
e−ν2

q

(−30νq − 20ν3
q − 8ν5

q − 8ν7
q

)
+ 15

√
πErf(νq)

)
, (7)

which, in turn, becomes the search for when the exponential
attenuation has won, viz,

e−ν2
q

(−30νq − 20ν3
q − 8ν5

q − 8ν7
q

) � 0. (8)

The dimensionless dependence of Q(ν) is indicated in Figure 2
(red curve). From this figure, it becomes clear that the desired
estimate for νq is conservatively where the red curve is no longer
distinguishable from the horizontal blue curve at the value of
q‖. This condition is satisfied by the following inequality:

3.5 � νq � 4.0. (9)

The horizontal green line in Figure 1(a) reflects the SB speed
condition of Equation (9) centered on 〈νq〉 = 3.75. Since the
numerical range for νq is controlled by the speed dependence
of the speed integrand of Equation (6), its size is unaffected
by proportionality factors such as α(x), or the units of Gq‖ as

can be seen in Equation (8). The SB approach requires that
collisions determine δf at least until Q(νq) saturates at the
assumed closure value of the heat flux, q‖. If this condition
is not enforced, the numerical value of the heat flux moment
would increasingly and unphysically originate from parts of
velocity space where f < 0; when this occurs at b̂ · νq < 0,
it can appear to be making warranted contributions to the
heat flux in spite of being kinetically unphysical. Alternately,
these are circumstances where f (v) = fMB + δf (v) < 0 that
are determining the integrated value of the moment and being
ascribed to the medium via Fourier’s (then) inappropriate use.

If δf (ν � νq) is maintained as a small correction compared
to fMB by Coulomb collisions, Maxwellians will be a good
zeroth-order estimate for the distribution function, and the heat
flow moment will accurately be given by Spitzer’s Fourier law
form. Otherwise, SB closure collapses (and the utility of the
fluid equations) and the structure of the heat law is unknown.

2.2. Level of Collisions Required by SB: v2

But what level of collisionality is sufficient to keep f (ν � νq)
essentially Maxwellian? The Coulomb scattering is strongly
speed dependent (unlike neutral scattering), a result that persists
even after realistically describing the scattering of electrons
from a large number of interacting protons with their Debye
shielding electrons, and even in very strong magnetic fields
(Montgomery et al. 1974).

The basic behavior is that the free path λ(ν) of an electron
with speed ν relative to ion and electron target increases
monotonically, essentially as the fourth power of ν:

λ(ν) = 4
√

2

15
λmfp

ν4

I(ν)
, (10)

were 1 � I � (3/2) is a slowly varying quantity (outlined in
Appendix A), and the free path averaged over a Maxwellian
distribution is indicated by the mean free path, λmfp. Since
Equation (10) (including the I dependence) is monotonically
increasing, the largest speed ν2 below which two or more
scatterings occur per shortest gradient scale L (of the moments,
e.g., n, nU, P ) is given by

2λ(ν2) = L, (11)

where L−1 = max(d ln M/ds), where M are the moment
quantities in the fluid equations and s is the arc length along
the magnetic field. Using Equation (10) into Equation (11)
determines the inverse Knudsen number scaling of the speed
ν2 to be

ν2(ν,Ke) =
(

15I(ν)

8
√

2Ke

)1/4

, (12)

indicated by the blue curve in Figure 1(a). Since ν2 measures
the upper bounding speed (for fixed Ke) of the sphere in velocity
space where collisions cause f (v) to appear nearly Maxwellian,
the clear consistency condition for the SB approach is that this
ν2 speed range of two or more collisions per L must at least be
as large as νq , viz,

ν2(Ke) � νq = 3.75 ± 0.25. (13)

Equation (13) implies that SB is self-consistent for all Ke where
the blue curve in Figure 1(a) is above the green line. From
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Equations (12) and (13), the condition and uncertainty for self-
consistent SB closure and Maxwellian lowest order velocity
distributions f (ν < ν2(Ke)) becomes

Ke � K∗
e ≡ 15I(νq)

8
√

2νq
4

� 0.01 ± 0.0026. (14)

The estimated mean value of K∗
e is indicated by the dashed

vertical blue line in Figures 1(a) and (b), set by the intersection
at the green circle of the green and blue curves in Figure 1(a).
This reasoning for a plasma yields results similar to, but
perhaps more accessible than, earlier theoretical simulation,
and experimental estimates (Gurevich & Istomin 1979; Gray
& Kilkenny 1980; Scudder & Olbert 1983; Shoub 1983), but is
well under the neutral Knudsen number regime, Kn � 1, found
to be reasonable for describing laboratory transport in neutral
gases.

Four nuances remain: (1) the SB condition is a global
condition, requiring at the very least that Ke(s) � K∗

e for
all distances s along the magnetic tube of force piercing
the local region of interest; (2) if globally Ke < K∗

e , then
f (ν � 3.75, x(s)) � fMB(ν) at all locales x(s) along the tube;
if only locally Ke(s) < K∗

e , then there is no assurance that non-
local contributions to f (ν)) can be precluded; at best it suggests
that f (ν � ν2(Ke) � fMB(ν � ν2). The misimpression remains
in the literature (3) that SB consistency should be expected in
a plasma up to Knudsen numbers of order unity (where neutral
expansions seem to be satisfactory), despite Equation (14) and
the literature cited above. Finally from Equation (14), it is
now clear that had νq been uncritically taken to be infinite,
there would be no finite gradients in which SB would be self-
consistent. As it is, the gradient regime where it is consistent is
rather narrow, with Ke � 0.01.

When the SB fluid closure procedure is self-consistent, it
is accompanied by a small thermo-electric field parallel to the
magnetic field, E‖, that counteracts the tendency of the plasma to
conduct an electrical current when gradients cause heat to flow.
While not present in thermodynamic equilibrium, ε ≡ (E‖/ED)
is a perturbatively small, dimensionless quantity in the weak
gradient SB description, where ED is Dreicer’s critical electric
field discussed in the next section. (E‖’s size was chosen by SB
when determining the zero current form of Equation (1)). We
now develop the role of ε as a bridge between the SB transport
regime and the more commonly occurring astrophysical regimes
where Ke > K∗

e .

2.3. Runaway Physics: vD

Outside the SB framework, a conservation law connection
between Ke and E‖ exists in a plasma, which not only includes
the expectation of a small thermo-electric E‖ when Ke 	 K∗

e

but also provides interesting insight for regimes Ke > K∗
e where

SB fails. We first show that ε = Ke from conservation laws and
then explore the impact of finite ε on the particle transport
outside the SB regime.

The relation of the Knudsen number and the parallel electric
field originates with the electron momentum equation:

E‖ � − b̂ · ∇ · Pe

ene

, (15)

where the approximations involve neglecting the thermal force,
gravitational, and inertial accelerations that are explicitly pro-
portional to the electron mass. Comparing the parallel electric

field of Equation (15) to Dreicer’s electric field, ED, (Dreicer
1959) defined by

eEDλmfp ≡ kTe (16)

yields the dimensionless electric field in Dreicer units, ε, defined
by

ε ≡ E‖
ED

� λmfp
d

ds
ln Pe ≡ Ke = λmfp

r

d ln Pe

d ln r

dr

ds
, (17)

where the pressure tensor has been approximated as isotropic,
s is the local coordinate along the magnetic field and the
logarithmic derivative of the electron pressure determines the
reciprocal of the local scale length, L. The mean free path in
the definition of Dreicer’s field (Equation (16)) is the electron
scattering mean free path introduced previously. In the low
corona, (dr/ds) � 1.

Equation (17) is not a perturbative statement, so it may be
used when Ke is not small. The content of Equation (17) in
the perturbative limit was part of the original self-consistent
SB approach (Spitzer 1962; Braginskii 1965) and accessible
texts (Hazeltine & Waelbroeck 2004). The general transport
regime Ke �= 0 develops distributed electrical potentials to strive
for quasi-neutrality and this relationship is a reflection of that
cause and effect between gradients and E‖, even when Ke is not
perturbatively small.

Dreicer showed that any finite E‖ divided velocity space into
two volumes. The dividing surface is a paraboloid, cylindrically
symmetric about the local magnetic field direction, with the
minimum speed on this paraboloid called the Dreicer speed,
νD , occurring along the magnetic field along F = −eE‖b̂.
For a given direction θ to F, the paraboloid is denoted by
νD(θ ) � νD . Outside this surface in velocity space (with apex
at speed ν = νD(Ke) indicated as Layer III in Figure 1(a)),
electrons gain more energy from the plasma’s parallel elec-
tric field, E‖ (parallel acceleration), than they lose by collisions
while traversing λmfp. When populated this regime contains Dre-
icer’s “runaways,” which have no analog in neutral gas dynamics
(Dreicer 1959, 1960; Fuchs et al. 1986). In velocity space, the
parallel electric field promotes particles from underlying layers
into runaway, producing a flux “into” local runaway. Histori-
cally, Dreicer phenomena have been associated with transient
disruptions of laboratory plasmas, with electrons separating
from the ions, hitting the vacuum walls, and terminating the ex-
periment. There is, however, growing evidence that the parallel
electric fields associated with gradients and needed to establish
quasi-neutrality can also be “large” in the sense of Dreicer’s
modeling (Scudder 1996a, 1996b), but the resulting astrophys-
ical system may nonetheless reach an equilibrium (Scudder &
Olbert 1979), with runaways being recirculated on global scales
much larger than λmfp because they cannot be localized with
such strong fields. In this picture, the non-thermals and run-
aways at xo are those recirculating runaways and non-thermals
from “elsewhere” in the system that are passing through the im-
mediate locale. Electrons in level II in Figure 1(a) are not quite
runaways in the technical sense, but are particles with ranges for
scattering greater than λmfp that increase as the νD boundary is
being approached and traversed. Thus, the strong electric field
provides a natural recirculation across the levels of Figure 1(a).

Dreicer also showed that any finite E‖ drives some particles
into runaway. The minimum speed promoted into runaway,
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denoted νD � νD(θ ), is given by

νD(Ke) ≡
√

3

ε
=

√
3

Ke

, (18)

scaling inversely with K
1/2
e as shown by the red curve in

Figure 1(a). This speed forms the apex of the dividing paraboloid
in velocity space. Its size and the variation of νD(θ ) control
the fraction FIII of particles from a presumed MB distribu-
tion that would be driven into runaway. The Ke dependence
of this fraction is shown by the red curve in Figure 1(b). In
the SB regime νD(Ke) � ν2, and this runaway fraction is
presumed ignorable in the SB transport model (Spitzer 1962;
Braginskii 1965). This tacit assumption forces one to reframe
self-consistency of SB for astrophysics in the global form
Ke(s(x)) < K∗

e for all points s along the magnetic field linked to
the volume of interest. At K∗

e where SB is locally last marginally
self-consistent, νD(K∗

e ) = 13.16 (where the red curve crosses
the vertical dashed blue line), more than nine thermal speeds
above the νq horizontal line for the SB heat flux description.
While there might be some runaways in the SB valid regimes,
they are assumed by SB to represent an inconsequential popu-
lation with small corrections to f (ν) so they cannot impact the
heat flux moment. If K∗

e is not a global bound along the mag-
netic flux tube connected to the volume of interest, there could
in principle be particles above νD(Ke) that might influence the
heat flow moment by their asymmetry. Note that Spitzer’s treat-
ment in the presence of the global bound on Ke(s) � K∗

e = 0.01
would not have such a regime. The global weakness of gradients
demanded by self-consistent SB closure preempts suprathermal
physics from playing any role in heat flow in that description
(Scudder & Olbert 1979). This circumstance reflects the limita-
tion of the mathematics of the weak gradient expansion, not that
non-thermals are irrelevant for heat conduction once violations
like Ke(s) > K∗

e occur on the tube of force.

2.4. Three Types of Electrons: The Mix of Kurtosis
Increasing with Ke

In this section, we present the progression with Ke of the
complexity of the electron distribution functions that can be
anticipated from the three speed levels (I–III) discussed in
Figure 1(a). In Figure 1(b), we have plotted the fractional
density, Fj, of each of the layers versus Ke, on the assumption
that the local value of Ke was the uniform bound on the flux tube.
Colors in Figure 1(b) correspond to colors of roman numerals
that identify levels in Figure 1(a). The velocity space volume
for Layer I was assumed spherical with bounding radius ν2;
the volume for Layer III was determined to be outside the
paraboloid defined by Dreicer: ν = νD(θ ) (Dreicer 1959); Layer
II reflects the complementary volume, except that when νD < ν2
we have set ν2 = νD . This progression clearly emphasizes the
increasingly “mixed” concentrations of different speed levels
of Figure 1(a) in the distribution function that accompany
Ke > K∗

e . The SB regime Ke � K∗
e is the most collisional

and hence Maxwellian regime (with very small kurtosis) with
negligible parts of velocity space containing departures from
MB behavior. As Ke increases, the collisional (level I) number
fraction steadily decreases, and kurtosis grows as a result. The
“thermal” level is no longer the majority constituent of the
electrons when Ke = KD = 1. Here the combined number
fractions of levels II and III are equal partners with the level I
density. Beyond Ke � 8, level III electrons are the dominant

determinants of the electron behavior, and the collisional level
I electrons are entirely negligible. We show in Section 5 that
the radial progression through 10−4 < Ke < 1 occurs promptly
within the first solar radius of the corona, leaving the clear
impression that the corona is quickly permeated with non-
thermal, kurtosis laden, electron distributions, as has been
previously assumed (Scudder 1992).

Because the contributions of these three layers to the total
electron density, number flux/current, pressure, and heat flux
are all proportional to their number density, the progression
of Figure 1(b) suggests the increasingly dominant roles of
level II and III particles in any treatment that is attempted at
the fluid level. Since these different levels will tend to have
different effective mean energies, 〈(1/2)ν2〉j , the progression of
Figure 1(b) suggests that these increasingly global particles will
have more to say about the variation of pressure and temperature
across these systems.

The existence of these three collisional classes with a varying
density fraction allows for a rich mixture of ways to support
the odd moments of current or heat flux. Because each level
in velocity space experiences different forces across different
scales, it is highly likely that they will contribute a different
mean number fluxes, nFj Uj = 〈ν〉j , and different partial
contributions to the aggregate electron flux or heat flux. The
net result, for the electron number flux

nUe =
III∑
j=I

〈ν〉j , (19)

contains in general different velocity space levels (j) having
different integrated contributions determined by their respective
averages 〈. . .〉j . As the densities of all constituents are non-zero,
the net result can hardly be surmised following the stochastic
effects on only one of the components. Similarly, the heat flux
for all the electrons,

q‖,e = m

2

III∑
j=I

〈|ν − U|2b̂ · (ν − U)〉j , (20)

will involve the factors that control the asymmetry of all three
velocity space layers (in general) with different localizations.

In fact, the successful modeling of the interplanetary heat
flux with two relatively drifting bi-Maxwellians for the core and
halo (Feldman et al. 1975) is an example of this general type
of contribution. The more loosely collisional halo population
drifts away from the Sun in the ion rest frame, while the core lags
behind the ion rest frame. This affords zero current, while having
the heat flow controlled by the halo, in spite of only containing
10% of the density. The strahl could even be considered as the
representative from level III, the runaways.

With these limited considerations it should be clear that
the detailed SB collisional physics that describes heat flow
(Ke < K∗

e ) regime is increasingly supplanted by non-thermal
physics as Ke > K∗

e . It is also clear that a quantitative transport
theory has to respond to the possibility that a significant fraction
of the particles are not locally thermalized by collisions. As this
cannot be done in the SB framework, this must be viewed as
an essential failure of that transport discussion. Since kurtosis
is the first moment that inventories the number of such particles
and it is missing in the SB closure, it must be included and
allowed to be non-perturbative in any generalization of SB.

The Knudsen number variation with radius, Ke(r), using solar
wind data below (Figure 5), increases monotonically and rapidly
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between 1 and 1.5 R� from (0.01–1); thus the horizontal axis of
Figure 1(b) can be viewed as a radial progress of behavior to be
expected in the lowest parts of the corona. The expected radial
progression through higher values of Ke(r) is very rapid (cf.
Figure 5 below). With models below we show that this variation
is nearly exponential at the base of the corona, placing the
transport for the corona squarely outside the self-consistent SB
regime essentially from the outset of the corona. As a reality
check of this argument we note that 0.5 � Ke(1 AU) � 1 and
as this figure suggests, non-thermal halo and strahl particles
(levels II and III) are routinely observed there (Feldman et al.
1975).

In reality, the local value of Ke may not be the uniform bound
along the flux tube through this locale. This means that the
segregation of levels I–III made on the basis of the local value
of Ke will be modified for the non-locality this affords. When this
happens, the level II and III particles found at r can, in principle,
be “passing through” the surmised distribution function at
r suggested when ignoring such non-local perturbations. A
transport theory for Ke > 0.01 is under development and will
be reported elsewhere as it is outside the scope of this paper.
Without such a transport theory, it is difficult to provide much
beyond these qualitative tendencies. Without such a transport
description, it is impossible to judge the relative importance of
wave-driven versus conduction-supported winds.

3. REMOTE TEST FOR THE VALIDITY OF THE
MAXWELLIAN ASSUMPTION IN

ASTROPHYSICAL PLASMAS

In this section, we integrate the results of Section 2 into
simple conditions to map out the regime of validity of the MB
assumption for these problems of interest.

3.1. SB and Heat Flow

When the magnetically linked plasma possesses Knudsen
numbers that globally satisfy Ke < 0.01, accurate closure
becomes possible with a heat flow essentially along B of the
form q‖ = −κ(∂T /∂s). Without the global restriction such
mathematical closure is impossible.

Proposed fluid solutions can be checked for global violations
of Ke < 0.01 anywhere along the tubes of magnetic flux that
thread the solution. If our examples below in Section 4 are
representative, there are many fluid solutions whose gradients
presume SB closure, but are not self-consistent with that closure.
This evaluation can be determined after the solution is produced
by exhibiting the variation of Ke obtained to show whether or
not globally Ke(s) � K∗

e = 0.01. Model independent data of
(ne, Te) from any source would be sufficient to calculate Ke and
suggest the likely variation of non-thermals from the behavior
of Figure 1(b).

3.2. Test for Emission Lines

The usual interpretation of emission lines assumes that the
radiation originates in MB regimes. This approach can be
retained for those emission lines whose energetic thresholds
E = (1/2)mw2ν∗2 have ν∗ < ν2(Ke), where Ke is the Knudsen
number in the source regime. We identify the layer of velocity
space below ν∗ � ν2(Ke) as acceptable (Ke, ν) locales where
emission spectra interpretations based on MB would appear
justified for estimates of the thermal plasma present, whether
SB is consistent or not. Layer I is the (Ke, ν) region where
MB-predicated emission line interpretations in terms of thermal

plasma with thresholds ν∗ 	 ν2(Ke) would be most secure
regardless of SB consistency; the complementary union of
regions II and III is the locale where non-thermal sensitivity
is expected for emission lines with ν∗ > ν2(Ke), and are
regimes suitable for inferences of non-thermal plasma being
present. Patterns of this type have been seen among lines
formed from ions with varying ionization potentials, with those
having higher ionization potentials seeming to require higher
ambient temperatures than those with lower absolute ionization
potentials (Bray et al. 2006).

It is possible that searches for non-thermal effects are not
appropriately filtered for this effect. Alternately, it has been
shown that the commonly observed enhanced line widths
attributed to “turbulence” could also be signatures of non-
thermal distributions in the source region (Scudder 1992). In
this sense, the non-thermal signatures are being defined to
be “turbulence” widths in an ad hoc way. When “turbulence”
widths are suggested, a cursory consideration should be given
to the likely size of Ke in the source region. Perhaps studies
of “turbulence” widths could be inverted to see whether source
regions where they are found are consistent with higher Ke
values.

Typically non-thermal distributions observed in space are
power laws at high energy. A commonly used distribution is
Olbert’s kappa function, (Olbert 1968) which has the form
f (ν) = A(1 + (ν2/κ))−κ−1. Several observers are already
reporting line profiles/ratios that require finite κ for electrons
and/or ions (Dzifcáková et al. 2011; Lee et al. 2012), or more
generally non-thermal distributions (Ko et al. 1996; Wilhelm
et al. 1998; Pinfield et al. 1999; Esser & Edgar 2000). The
expected line profile from kappa-induced Doppler broadening
have been worked out and shown to organize the “turbulent”
widths reported (Scudder 1992).

As an example of sensitivity to non-thermal distributions, the
typical rate R of creation of a population that is a source of
emission takes the form

R ∝ 4π

∫ ∞

ν∗
f (ν)σ (ν)ν3dν � 4πbf (ν∗)σ (ν∗)ν∗3

, (21)

where the second form suggests the control of R by f (ν∗) at the
threshold for the atomic physics. Here, σ is the cross section
for the process. In this approximation, Figure 3 demonstrates
the strong rate enhancements possible with a kappa non-
thermal distribution, rather than a thermal spectrum, of the same
density and pressure. Very modest non-thermal distributions
with κe � 20 can have a 700-fold reaction rate enhancement
that could make the difference between detection and not. For
κe � 7, these enhancements can exceed 104. In the presence
of non-thermals, many different combinations of non-thermal
index and most probable speed can be the possible explanation
for any given line’s presence in spectra.

3.3. Test for Wave Damping

Modeling that incorporates collisionless damping calcula-
tions makes assumptions about the plasma distribution func-
tions that control the plasma dielectric. The most likely regimes
where the Maxwellian approximation for the plasma dielectric
is possibly warranted are those resonant estimates that occur for
phase velocities νφ < ν2(Ke), and those non-resonant effects
when the non-resonant particles principally occur below ν2(Ke).
Clearly, estimates of resonant damping for νφ > ν2(Ke) using
Maxwellian dielectrics are imprecise for the same reasons that
the interpretation of emission lines would be for ν∗ > ν2(Ke).
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Figure 3. Variation at threshold, ν∗, of the ratio of phase space densities
fκ (ν∗)/fMB(ν∗) as a function of ν∗ and κ , where the compared fκ and fMB
both have the same density and pressure, but different shape parameters. The
importance of the non-thermal tail goes as κ−1, with stronger tails at smaller κ

and convergence to an MB distribution as κ → ∞. Labeled curves are for a fixed
threshold value (in red) of ν∗ of the candidate reaction rate. When ν∗ is in the
suprathermal regime, strong enhancements are possible; these could make the
difference between transitions being detectable in the presence of non-thermal
distribution functions vs. below threshold in the presence of Maxwellians with
the same density and pressure

(A color version of this figure is available in the online journal.)

4. VARIATION OF Ke(r)

Simple models of static isothermal atmospheres permit ana-
lytical estimates of the radial variation of the plasma Knudsen
number, Ke(r). The common density (Pannekoek 1922;
Rosseland 1924) of electrons and ions is

n(r) = n◦exp
(
−β◦

(
1 − r◦

r

))
, (22)

where the large dimensionless constant β◦ = GM◦(Mp +
me)/(2kT◦r◦) is the square of the escape divided by ion sound
speeds at r◦. Stars on the MS have tightly bound atmospheres
ensuring that β◦ is generally a large number. In Appendix B,
theory and observations determine an MS range of 500 �
β◦ < 8000, with the value for our Sun being β� � 1925 at
a temperature of 5974 K.

The radial variation of the electron Knudsen number is
determined by the variation of the mean free path λmfp(r) and
the scale length of the isothermal pressure:

Ke(r) =
∣∣∣∣λmfp(r)

d ln ne

dr

∣∣∣∣ . (23)

With constant T, Ke becomes

Ke(r) = Ke,◦
r2
◦

r2
exp

(
β◦

(
1 − r◦

r

))
, (24)

where the base Ke is given by Ke◦ ≡ λmfp(r◦)β/r◦. The base
radius r◦ for the star should be a locale where the radiation and
particle fields are essentially uncoupled. In the solar case we
have taken this to be r◦ = R� + 2080 km in the chromosphere,
where To � 5974 K.

We desire to invert Equation (24) to obtain r(Ke) and from
it where in the atmosphere K∗

e = 0.01 occurs. Given the strong
exponential dependence of Equation (24), r(Ke(r)) is deter-
mined perturbatively in terms of Δr = r − r◦; after assuming

Δr

r◦

Δr

r◦

T

T

Main Sequence Non-Thermal Transition r > r◦ + Δr

Non-Thermal Distributions Present

Thermal Distributions Present

Figure 4. Estimates of the variation (red) across main-sequence stars of the
heights Δr/r◦, where transition to suprathermal signatures occurs, vs. photo-
spheric temperature relative to the Sun, T/T�. The radius where the plasma
becomes uncoupled from the radiation field is denoted as r◦. The altitude Δr

of this transition to significantly suprathermal f (ν) is suggested (red curve) for
M8–O3 stars to be between 0.00065 and 0.013 r◦ above r◦. Non-thermal dis-
tributions are expected above the red curve; thermal spectra are expected below
the red curve. Above the red curve, Spitzer–Braginksii transport coefficients are
not theoretically defensible.

(A color version of this figure is available in the online journal.)

Δr 	 r◦, we obtain the approximate form

Δr

r◦
�

ln Ke(r)
Ke◦

β◦ − 2
. (25)

Assuming Ke◦ � 10−4 (Fontenla et al. 1990), we now estimate
Δr(K∗

e ) above which non-thermal signatures are expected and
SB closure fails. This result depends only logarithmically on
the poorly known base Knudsen number, Ke,◦, that we have
estimated based on solar modeling. To qualify our result by this
ambiguity, we incorporate the statement of our assumption

Δr

r◦
�

4.6 + 2.3 log 10−4

Ke◦

β◦
, (26)

where non-thermal distributions should be expected and com-
mon logarithms are used. The large value of β◦ controls the size
of this result despite the ambiguity of the base Knudsen number.
Equation (25) would only be increased five fold to 23/β◦ on the
assumption that Ke◦ = 10−12. Across the entire MS, the non-
thermal transition occurs very low in the atmosphere, ranging
(red curve in Figure 4) from 0.00065 � (Δr/r∗)|MS � 0.013,
centered on the solar value of (Δr/r◦)|� � 0.0023. Considering
the extreme ambiguities in Ke◦, these estimates might be low
by a factor of five, but are certainly less than 0.01 for the Sun,
and below 0.004–0.05 across the MS stars in Figure 4.

For the Sun, this implies that within 1600 km above the base
height of r◦ � R� + 2080 km, non-thermal physics should be
a part of the solar atmosphere and SB transport no longer
valid. Because large β◦ is the hallmark of MS stars, the radially
precipitous transition to ubiquitous non-thermal distributions is
a general expectation for all MS stars. This conclusion links the
existence of suprathermal parts of f (ν) to gravity, the Rutherford
cross section, and gradients of the equilibrium moment profiles,
rather than (1) instability thresholds, (2) posited power spectra
of turbulence, or (3) other forms of time dependence as the agent
for promotion of the particles to form the suprathermal tails.

While such simple models may not completely reproduce
profiles of the entire atmosphere, these calculations suggest
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Figure 5. Variation of Knudsen number, Ke (red solid curve, CBE; red dashed
curve, CDQB), from two wave-driven solar wind solutions that include SB heat
conduction at small radii before switching over to saturated heat flux (Hollweg
1974); variation of λmfp/r (black dashed curve, CDQB; black solid curve, CBE).
Upper bound for self-consistent Spitzer–Braginskii regime is the blue dashed
line (Ke < 0.01). Vertical line at Δr illustrates where the current paper predicts
where the solar Knudsen number should exceed SB threshold, Ke > 0.01.

(A color version of this figure is available in the online journal.)

that Ke does initially rise precipitously when the atmosphere
is fully ionized (cf. Figure 5, below), making suprathermal
physics important, if not controlling, in the lowest reaches of
these atmospheres, within a few hundredths of the base radius.

5. Ke(r) IN WAVE-DRIVEN SOLAR WIND MODELS

Fluid solutions are often used to evaluate the conse-
quences of various forms of energy addition to the solar wind
(Chandran et al. 2011, hereafter CDQB; Cranmer et al. 2007,
hereafter CBE). Both CDQB and CBE model an Alfvén-wave-
driven wind and both use a two-zone model for the heat flux
(Hollweg 1974), with SB closure assumed below r∗ (where
2λmfp(r∗)/r∗ � 1) smoothly joins Hollweg’s saturated model
beyond. The CDQB model contains two fluids with proton
anisotropy, while CBE is a one-fluid treatment. The one-fluid
model starts at the photosphere, while the two-fluid solution
starts from an inner boundary condition essentially at 1.01 R�.
The structure of the one-fluid equations is set by SB closure
projections, but has additional source and sink terms associated
with the modeled wave dissipation considered. The two-fluid
model uses a fluid structure set by SB closure for the electrons
and a closure for the ions modified for bi-Maxwellians, but not
for closure impacts due to waves.

Figure 5 summarizes the radial variation of λmfp/r for these
solutions (black solid curve, CBE; black dashed curve, CDQB),
together with the radial variation of the electron Knudsen
number (red solid curve, CBE; red dashed curve, CDQB)
determined using the identity

Ke ≡ ∂ ln Pe

∂ ln r

λmfp

r

dr

ds
. (27)

The horizontal blue dashed line is the maximum Knudsen
number K∗

e = 0.01 for which SB transport and closure is
self-consistent. Beyond h = 0.05, both fluid solution profiles
exceed the maximum K∗

e = 0.01 threshold for self-consistent
SB closure. This is approximately the maximum location Δr
estimated in Section 3 where Ke(r) > 0.01 was to be expected
in the solar case. Additionally, the solutions both have Ke(r)
profiles that rapidly increase with r (like the theoretical solutions

in Section 3), exceeding Ke � 1 in the vicinity of h � 1, and
rising still further until turning over beyond h � 10. The CDQB
solutions infer that the Alfvén wave energy flux is deposited
within h � 10, across the same interval where the SB description
of the heat flow is inconsistent with the Ke > 0.01 limit for self-
consistency. The coronal temperature maximum occurs near
h = 1, in the middle of the interval where the Alfvén wave
energy is suggested to dissipate and where the heat flow used in
the equations is inconsistently described by the SB formula.

This retrospective analysis of these solutions raises several
questions. If SB is not self-consistently affirmed, as here, what
equations describe the plasma at the fluid level? Is the implied
parallel electric field of such a model consistent? It is the
ultimate microscopic force that accelerates the wind. What is
the implication of integrating the fluid equations, with electrons
closed using the SB approach, using an incorrect heat flux
and inferring that an additional energy source is required?
The situation for the energy equation is different than the one-
fluid continuity and momentum equations, where summational
invariants ordain the vanishing of collisional contributions to
the equations. However, a similar complication is in play for
the two-fluid description, even at the momentum level via the
thermal force. Can the argument be pursued that such equations
with such liabilities nonetheless affirm the wave-driven scenario
for the wind’s acceleration? Can the inadequacies of conduction
to drive the wind really be adduced when its description and
closure framework are so much in question? These are but
a few of the questions that our finding opens for careful
further consideration. These considerations will be undertaken
elsewhere, as will our approach to extending the SB closure
with a different macroscopic approach.

On the surface, it would appear difficult to address the
pressing problem of the coronal temperature inversion by
including new effects in a fluid description that simultaneously
has a flawed description of the heat flux that if described
appropriately might potentially be competitive for explaining
the temperature inversion of the corona.

6. CONCLUSIONS AND DISCUSSION

The conditions for expecting an MB distribution in an astro-
physical plasma are restricted to magnetically linked volumes
of plasma whose Ke(s) are globally below K∗

e ≡ 0.01. In the
heavily bound atmospheres of MS stars, the transition away from
MB distributions occurs rather low, less than Δr � 0.01–0.05r◦
above r◦ which is the height in the atmosphere where the
radiation field and the particles are decoupled. Non-thermal
plasma distributions in the fully ionized atmospheres of MS
stars should be commonplace above these heights. In isother-
mal atmospheres the Knudsen number grows radially outward,
initially exponentially. Two recent solar wind solutions that re-
produce observations illustrate strong growth of Ke with increas-
ing r, and both show that the above estimate where the Knudsen
number in the atmosphere passes through 0.01 is as predicted
from our analysis in Section 4 above.

The solutions and observations suggest that the electron
Knudsen number continues to grow with increasing radius,
exceeding Ke � 1 before the temperature maxima seen in the
same solutions. We have shown in Figure 1(b) that there is every
expectation that non-thermal distributions will accompany this
growth of Ke > 0.01. It is known at 1 AU where 0.5 < Ke < 1
that the observed ambient f (v) is decidedly non-thermal just as
our general arguments have suggested.
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We have also seen that the very small and restricted domain
for SB closure is also the same regime where non-thermals have
a negligible presence (cf. Figure 1(b)). We have suggested that
the proscribed absence of non-thermals required for the self-
consistency of SB is also why it cannot work for astrophysics,
since the non-thermals are almost impossible to avoid, being
inherently related to gravity, the energy dependence of the
Coulomb cross section, expansion into essentially a vacuum,
and the deep connection between Ke and ε = (E‖/ED). The
extensions of stellar atmospheres with their rapidly depleted
densities develop space charge problems that produce E‖
for equilibrium that require variations of Ke to support that
equilibrium. With increasing Ke come the non-thermals; with
the non-thermals comes non-perturbative kurtosis that is not
allowed in the SB framework. We have argued that more general
closures of the type Grad has suggested will be required for the
astrophysical regimes; these closures should consider lowest
order distributions with kurtosis variation. Such new closures
will have energy and new “fluid” equations that are structurally
different from those obtained assuming SB closure and lowest
order Maxwellian distribution functions. At the very least such
new equations must keep track of kurtosis and the variation of
kurtosis in its moment level analysis.

The suggested generality of non-thermal distributions pro-
vides a way to understand how the predictions of an approach
like velocity filtration can be involved in understanding the in-
version of MS coronae. The velocity filtration model (Scudder
1992) for understanding the temperature inversions of MS coro-
nae essentially followed a model kinetic equation in which the
initial conditions had kurtosis. In the collisionless Vlasov limit,
the kurtosis of a kappa function is invariant across retarding po-
tentials, but has other interesting properties such as density and
temperature anti-correlated. This behavior was outside what SB
could produce and it was outside the approximations of poly-
tropic closure. But that calculation is precisely what transport
would permit in the infinite Ke regime and its basic features have
been documented even with the inclusion of Coulomb collisions
in Fokker–Planck codes (Dorelli & Scudder 2003) and modern
exospheric solutions (Pierrard & Lazar 2010). To be sure, pure
velocity filtration is not the appropriate description for all the
different speed layers of Figure 1(a) that we have discussed
here, but it is the dominant effect on the pressure when the gas
is climbing out of a deep stellar centered gravitational trap. It is
no accident that all MS stars have these temperature inversions,
and they all have the tightly bound atmospheres of Section 4
with the large β values. This circumstance assures us that the
velocity filtration effect, enabled by kurtosis, has a large impact
on the temperature profiles of these stars, including being able
to produce their inverted profiles.

Strong sensitivity of emission lines and collisionless damping
signatures were shown when threshold energies or phase veloc-
ity energies occur in the suprathermal parts of velocity space
with electron kinetic energy thresholds E >

√
(15/8Ke)kTe∗,

where Te∗ = (2κe − 3/2κe)Te < Te, where Te is the total ran-
dom energy for the electrons and 1.5 < κ � ∞.

Second, the transport models of Spitzer and Braginskii are
clearly contraindicated when Ke > 0.01 occurs along any part of
the magnetically linked regions to the volume of interest. Non-
thermals are suggested to become generally important in MS
atmospheres, either from local production above Δr/r◦ = 0.01
or from non-local transport from regions away from the volume
of interest. It is a very difficult research problem to assure that
any given region should have a Maxwellian distribution when

magnetically linked to other regions where strong runaways are
produced.

Third, the significant kurtosis implied by these non-thermal
populations militates for the exploration of more general clo-
sures (Grad 1949) that are not so closely tied to thermal states of
local thermodynamic equilibrium as those used by Spitzer and
Braginskii which have no kurtosis. There are already interest-
ing aspects of this type of description capable of producing the
coronal temperature profile in the collisionless (Ke = ∞) limit
(Scudder 1992) and explaining the Helios solar wind proton dis-
tribution functions (Leblanc & Hubert 1998). Making allowance
for non-perturbative kurtosis (as is possible by Grad’s method)
seems to be the essential next step toward an astrophysically
useful transport theory that would eventually predict the skew
of that kurtotic component on a coequal basis with the other
lower moments and not presume to produce the skew and kur-
tosis perturbatively as the SB expansions do.

We acknowledge grant support from NSF 1202152, discus-
sions with and data for Figure 5 from B. D. Chandran and S. R.
Cranmer, together with manuscript comments from P. Cargill,
D.A. Roberts, E. Lee, and R.E. Hartle.

APPENDIX A

SPEED DEPENDENCE OF λ (ν) FOR ELECTRON
SCATTERING: EQUATION (10)

Electron scattering in the plasma occurs off of ions with νei

as well as off of background electrons with νee. Assuming
that electrons and ions have the same kinetic temperature T,
their velocity distributions have thermal speeds that differ by√

(M/m) � 42. As usual, collision rates add and the scattering
rate for relative speed ν, which is dimensionless in electron
thermal speed variables, involves the number of scatterers
with speed below that of the relative speed. The number of
such protons, δn+(ν), and electrons, δn−(ν), are given by the
expressions

δn+(ν) = 4n√
π

∫ ν

0
exp

(
−M

m
ν ′2

) (
M

m

)3/2

ν ′2dν ′ (A1)

and

δn− = 4n√
π

∫ ν

0
exp(−ν ′2)ν ′2dν ′. (A2)

The total electron Coulomb collision frequency ωe(ν) for
relative speed ν becomes

ωe(ν) = α
δn+(ν) + δn−(ν)/2

ν3
, (A3)

where the factor of one-half originates in the reduced mass for
e–e scattering, and the inverse cubic dependence is from the
Rutherford behavior for the Coulomb interaction. In turn, the
free path for relative speed ν is given by

λ(ν) = ν

ωe

= 1

nα

ν4

I(ν)
, (A4)

where

I(ν) ≡
(

Erf

[√
M

m
ν

]
+

1

2
Erf[ν]

− ν√
π

(
2

√
M

m
exp

[
−M

m
ν2

]
+ exp[−ν2]

)
. (A5)
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The full speed dependence of I has three zones with slightly
different structures: (1) ν < 1/42, (2) 1/42 < ν < 1, and
(3) ν > 1, where I may be successively approximated as

I

(
ν 	

√
m

M

)
� 4

3
√

π
ν3

((
M

m

)3/2

+ 1

)
, (A6)

or

I

(√
m

M
< ν < 1

)
� 1 + Erf(ν)/2 − νexp(−ν2)/

√
π, (A7)

or
I(1 	 ν) � 3/2. (A8)

Because there are so few electrons in the first regime, its
functional dependence hardly influences the mean free path;
the other two regions do however; there I is of order unity
and weakly varying. This leaves the basic speed dependence
across essentially the total electron spectrum as λ(ν) ∝ ν4

as we have used in Equation (10). Between approximations
of Equations (A7) and (A8) 1 � I(ν) � 3/2, which
causes a slightly different normalization when extracting the
actual mean free path λmfp in front of the accurate speed
dependence, viz,

λaccurate(ν) = 0.3770λmfp
ν4

I(ν)
� 4

√
2

15
λmfp

ν4

I(ν)
, (A9)

versus the idealization of Equation (10) that

λapprox(ν) = 4

15
λmfpν

4 = 0.2666λmfpν
4. (A10)

In the regime where Equation (A8) is appropriate, Equation (A9)
reduces to become

λaccurate(ν � 1) � 2

3
0.3770λmfpν

4 = 0.2513λmfpν
4, (A11)

which is less than �5% away from the form being used in
the text. Note that it is in this regime that K∗

e is determined
at νq = 3.75, so the errors in using the approximate form do
not seriously modify the estimate where SB transport lapses.
However, we do use the full speed dependence of the free path to
get the proper extensions of the ν2(Ke) blue curve in Figure 1(a).

APPENDIX B

VARIATION OF β ACROSS MAIN-SEQUENCE STARS

The solar normalized luminosity, L/L�, and mass, M/M�,
of MS stars are empirically related (Lang 1992) by

L

L�
�

(
M

M�

)3.8

. (B1)

Together with the Stefan–Boltzmann Law, Equation (B1) im-

plies that
T

T�
=

(
M

M�

)0.95 (
R�
R

)1/2

, (B2)

which implies that the ratio of the squares of the escape speed
to the acoustic speed becomes

β = β�

(
M

M�

)0.05 (
R�
R

)1/2

. (B3)

Using MS star data (Schmidt-Kaler 1982), β varies only by
factors of four on either side of the solar value, β� = 1925 for
a range of MS stars; this variation determines Figure 4.
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