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Abstract

The thermal force (TF) is an exchange force mediated by Coulomb collisions between electrons and ions in a heat-
conducting astrophysical plasma, is one of three, non-inertial, balancing terms in the parallel component of the
generalized Ohm’s law, and is magnetic field aligned with a size that scales with and is parallel to the
dimensionless heat flux. The TF (i) increases the size of EP above that implied by the electron pressure divergence;
(ii) deepens the electrostatic trap for electrons about the Sun; (iii) strengthens the electron kurtosis and skewness,
further levitating ions out of their gravitational well, (iv) constrains the heat flow in a plasma where parallel
currents are preempted; and (v) is shown to be directly measurable using the full electron velocity distribution
function above and below thermal energies. (vi) The usually ignored TF modifies all species internal energy
equations; it enhances the rate of conduction cooling by the electrons, increases the ion entropy, and forestalls
adiabatic behavior. Using estimates at 1 au this effect is especially strong in the higher speed wind U>400 km s−1

regime. (vii) On rather general grounds any physical heat transport is accompanied by an underlying TF; in almost
all known cases of modeling astrophysical plasmas this dependence is ignored or demonstrably incorrect. It follows
that attempts to predict species specific pressures without inclusion of the TF is futile.
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1. The Physics of the Thermal Force

The thermal force (TF) is a friction unique to plasmas and
Coulomb collisions in high-temperature astrophysical plasmas
where heat flow is virtually unavoidable. The TF remains
nonzero even when the center of mass for all species are
matched, as assumed when making the JP=0 idealization for
plasma fluid modeling of solar wind and commonly for other
astrophysical plasma modeling. It was explicitly identified in
Braginksii’s seminal paper (Braginskii 1965), but its role in the
literature dates back to 1953 when its effects were included in
the Spitzer & Härm (1953) determination of the heat diffusivity
coefficient (Rossi & Olbert 1970; Ferziger & Kaper 1972;
Balescu 1988; Fitzpatrick 2014). While the Spitzer–Härm
derivation included the (unnamed) TF in its development, the
resulting closure was limited to (i) small magnetically aligned
(b̂) pressure Knudsen numbers

ˆ · ( )lº -  b Pln , 1P e mfp

assumed infinitesimal, and (ii) for systems with vanishing field-
aligned forces such as pressure gradients or gravity (Spitzer
1965; Balescu 1988). While there have been attempts to
include TF and field-aligned forces, they have only been
carried out for the infinitesimal P regimes (Ferziger &
Kaper 1972; Balescu 1988), which are not generally appro-
priate for most astrophysical plasmas with finite steady-state
pressure Knudsen numbers. Until now the TF’s role seems to
have been overlooked when heat relations are adopted for the
solar wind and coronal modeling (e.g., Breech et al. 2009;
Cranmer et al. 2009), where finite P is always a part of the
atmosphere above 1.05 Re (Scudder & Karimabadi 2013).

These lacunae will be important in studies that attempt to invert
the heating rates of various species from such incomplete
conservation laws.
In this paper the general size of the TF density is shown to be

determined by a local moment-like integral over the electron
velocity probability distribution function (eVDF); it is nonzero
when the eVDF possesses an odd pitch angle symmetry in the
plasma rest frame. The TF is closely related to other more
frequently encountered eVDF moments with a similar
sensitivity: the field-aligned current and heat flux.
The size of the TF depends inversely on the rate of processes

that would symmetrize the eVDF. However, such scattering
processes are in competition with other agents, like the
underlying EP, that act to distort the eVDF, giving it skewness
and impacting the size of both the TF and the heat flux. The TF
as a net residual, depends on the results of these competitions
between symmetrization and deformation of the eVDF.
Microphysically the finiteness of nonzero Coulomb scattering
frequency νei scales the rate of binary momentum transfer.
If the symmetrization effects of collisions were the sole

determinant of the size of the TF, one might expect that the TF
would approach zero in the strongly collisional Spitzer regime,
scaling inversely with increasing νei. However, in this regime it
is known that the symmetrization and distortion tendencies
compensate, leaving a net result in the absence of JP called the
TF that does not scale with the binary rate of collisions
(Braginskii 1965; Fitzpatrick 2014). The solar wind at 1 au is
not like that supposed by Spitzer and is shown below to have
an even more counterintuitive inverse scaling with decreasing
collision frequency.
Below the TF’s importance is demonstrated to grow with the

size of the Knudsen number, being the largest in the high-speed
solar wind traditionally characterized as the least collisional.
The parallel electric field is shown to be an important factor in
the growth of the TF, which is shown to scale directly with the
size of EP, while scaling inversely with the local Coulomb
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collision frequency. From these observations the tendency to
“grow” eVDF asymmetry in the finite Knudsen regime
apparently overpowers the available processes that can remove
it, leaving the TF an important player in any fluid-scale
description of heat-conducting astrophysical plasmas.

The TF should be considered as omnipresent in astrophysical
plasmas since its role scales with the importance of conduction
heat flows in the plasmas; these are invariably important in
astrophysical plasmas, especially those hot enough to remain
fully ionized and thus proficient conductors of heat.

The moment form of a heat closure cannot be uniquely
inverted to determine the TF that corresponds to it. The absence
of the TF in astrophysical plasma modeling is a direct corollary
of the ad hoc way that heat law closures are introduced at the
moment level without an underlying eVDF predicate for their
origin (Breech et al. 2009; Cranmer et al. 2009). The
infinitesimalP approach of Chapman–Enskog (Chapman 1916;
Enskog 1917) determines the transport modifications for the
eVDF and then makes sure they produce force balance in the
generalized Ohm’s law, hereafter GOL (Rossi & Olbert 1970).
This type of construction is a part of the kinetic transport
discussions of Spitzer (1965), Braginskii (1965), Ferziger &
Kaper (1972), and Balescu (1988), for infinitesimal P regimes.
Because of the perturbative nature of these forward construc-
tions of the TF, they are not appropriate for astrophysical fluid
plasma modeling in the omnipresent finite P regime.

To address the observable profiles of electrons and ions
separately, at least a two-fluid description is required and the role
of the TF cannot be suppressed. Below it is shown that the TF
changes the structure of the electron and ion internal energy
equations, preferentially cooling the electrons and heating the ions.
If the TF is unavailable, suppressed, or ignored, these redistribu-
tions of internal energy cannot occur in the modeling, although
they are enabled in nature. Until this self-consistency is assured the
plasma fluid equations do not make predictions worthy of
quantitative comparison with observations. Conversely, observa-
tions compared with fluid modeling with inconsistent closures,
yield no conclusion except that of a hung jury (Scudder 2019a).

The TF on electrons strengthens the equilibrium radial
outward parallel electric field (for JP=0) beyond that inferred
from ·- P ene e alone (see Figure 1 for estimates). Thus, the
TFP enhances the depth of the electrostatic well for electrons in

the solar wind and corona, using the leading-order field-aligned
components of the electron momentum equation:
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while simultaneously allowing strong heat flow skewness with
JP=0, since enhancing EP enhances the suprathermal fractional
density in the eVDF (Scudder 2019b). The second equation
above proceeds from the first by scaling by eED, where ED is
Dreicer’s electric field (Dreicer 1959, 1960) defined by
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where ( )n we is an electron–ion collision frequency at speed we

(Dreicer 1959) that can be given a precise definition via
Equation (9) in Dreicer (1959). The parallel electron pressure
Knudsen number, P, of Equation (1) arises naturally in the
GOL as the ratio of the field-aligned pressure gradient force to
eED. The dimensionless TF is defined by

( )
º

eE

TF
. 4

D

The existence of a heat flux TF coordination implies that
there is a Coulomb scattering moderated electron heating rate
nE

TF for electrons that outpaces the Coulomb energy exchanges
nE ei,

Gauss (between Gaussian ion and electron distributions) by at
least the factor ( )m m3p e . Explicit incorporation of the TF
effects modify the structure of the separate electron and ion
internal energy equations in two ways: introducing exchanges
not present in multifluid gas dynamics through second-order
Stokes processes and second-order ohmic losses, discussed
below in Section (7).

2. Is Electron–Ion Friction Important in the Solar Wind?

Slippage friction (usually termed Stokes friction) occurs
when two fluids coupled by collisions are in relative motion,
with different mean flow velocities. The neutral fluid plasma
model postulates common bulk motions of ions and electrons.
In this fluid treatment of the plasma there is no (first-order)
Stokes friction between electrons and ions despite the presence
of Coulomb interactions.
The existence of the TF is synonymous with the skewness in

the eVDF that accompanies heat flow. It is a useful straw model
to think of a skewed eVDF as produced by the sum of two
Gaussians drifting slowly with respect to one another along the
magnetic field (as indicated in Figure 2). If such an eVDF is to
be a proxy for a neutral fluid moving with the flow velocity of
the protons, the densities, ne j, and the inertial frame Gaussian
flow velocities Ue j, will be coordinated so that

( )
( )

+ = +
D =- D

+U U Un n n n

n n , 5
e e e e e e

e e e e

,1 ,1 ,2 ,2 ,1 ,2

,1 ,1 ,2 ,2

Figure 1. Estimated partition at 1 au of the dimensionless  = E ED as a
function of bulk speed U from the measurement of terms of the GOL showing
the additive (red) correction from  to that from the (blue) pressure Knudsen
number, P.
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where the electron-component, field-aligned slippages in the ion
frame are given by ( ) · ˆD º - +U U be k e k, , . If the component
electron partial densities, ne j, , are different, the underlying
slippage speedsDe j, will be anti-collinear. To model zero current
and finite skewness (heat flow) the rms thermal speeds of the
two Gaussian components must be different (see Equation (24));
this produces a different scattering rate between thermal
electrons and ions as opposed to suprathermals with ions,
causing a nonzero TF parallel to q e, .

The core–halo form for the modeled solar wind spectra (Feldman
et al. 1975; shown in Figure 2) is a superposition of two Gaussian
distributions (green and yellow) in the upper part of the figure
(thermal/core and suprathermal/halo). By observations (Feldman
et al. 1975) these (core–halo) subpopulations have (higher-lower)
densities and (lower-higher) rms widths in velocity space, and drift
along b̂ (lagging-leading) the much narrower ion distribution (red
dot) that determines the center of mass of the plasma.

The dissimilar electron sub-fluids are the thermal and
suprathermal components with different fractional densities,
and rms thermal spreads that as a tandem support the heat flow
(skewness) of the electron eVDF. The skewness supported by
these two components has been modeled from observations
(Feldman et al. 1975) as the result of counterposed field-
aligned flow speeds in the ion rest frame. Together with their
different densities these drifts are consistent with representing
no parallel current in the ion rest frame as shown in Figure 2.

Conceptually the TF is the net result of the two oppositely
sensed Stokes drags, ds, dth (for the suprathermal (s) and thermal
(th) drags) with the protons via Coulomb scattering. The net drag
is always dominated by the cooler thermal electron “Stokes”
contribution, giving the TF the same sense as dth and that of qP.
With this competition the TF is a second-order Stokes friction
result. The possibility of a TF arises from the plasma’s strongly
speed-dependent Coulomb collision frequency and has no
analog in heat-conducting neutral gas dynamics.

3. Fokker–Planck Description of Coulomb Drag

The Fokker–Planck drag between a general gyrotropic
electron distribution function ( )vfe and a distribution of ions

with rest frame velocity Ui is discussed as a preparatory
calculation for determining the TF without recourse to model-
dependent expressions, as found in the Braginskii summary
(Braginskii 1965). Because of the mass disparity ions are well
modeled for scattering as delta functions in velocity space.
The dimensionless eVDF Fe is defined so that

( ) ( ) ( )
p

ºv U vf
n

w
F, , 6e e

e
e3 2 3

where v represents the inertial frame velocities of the individual
electrons. n, Ue, and we are determined by the first three
moments of the eVDF. With this approach Fe is dimensionless.
From Rosenbluth et al.’s (1957) Fokker–Planck formulation

the drag on electrons caused by the ions possessing a bulk
velocity U+, takes the form
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Here we have introduced ( ) ( )p lG º e m p4 Loge e D o
2 2 , where

λD is the Debye length and po is the average impact parameter
for 90° scattering. Since G -n we e

3 is a frequency one can easily
show that Equation (7) has the units of a force. Using

zº - = -+ +g v U Uwj and z= =d g d v w d3 3 3 3 we obtain
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where the pole for z is selected to be that of ˆ
bqe, or b̂ with

preference for the vector set by the sense of qe, if it is nonzero.
With this understanding we define

ˆ
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The notation ˆ · ˆm z z=z b has also been introduced. For future
reference the definition of  contains its dependence on the
electron’s relative drift, Δ, along ˆ qe, as seen in the ion’s rest
frame.
In this way the drags considered include three classes of

eVDFs: (i) those drifting with respect to U+, but possessing no
heat flow in their bulk speed rest frame, Ue; (ii) those not
drifting with respect to the ions = +U Ue but possessing a heat
flow; and (iii) those drifting relative to ions and possess heat
flow in the Ue frame. Modeling of class (i) recovers Stokes
friction; (ii) TF friction; and (iii) the general possibility.
The usual fluid model of a plasma pertains to class (ii). En

route to developing the general form for the TF in this regime,
we first demonstrate that the general analysis recovers the
special case (i) considered by Dreicer of a Gaussian eVDF
drifting in the ion heat frame.
If the eVDF, fe, is defined in the ion rest frame, then clearly

zº - =+g v U we . In the case (i) above, the electrons are

Figure 2. A conceptual diagram of the TF, where the skewness of the eVDF is
modeled by two drifting isotropic Gaussians with different temperatures and
densities. Such a model has been used to characterize a large body of solar
wind electron data (Feldman et al. 1975).
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isotropic in their own frame, but by drifting D º - +U Ue in
the ion frame ( )zFe will depend on the cosine, μζ, of the polar
angle in the ion frame. The drifting property of fe will have a
nonzero projection along P1(μ) and a nonzero drag and

( )D ¹ 0. This leads to Stokes (first -order) drag studied by
Dreicer (1959).

Alternately, if the eVDF considered does not drift with
respect to the ions, then μζ reverts to the traditional electron
pitch angle in the = +U Ue rest frame, where the last integral in
Equation (8) can still be nonzero if the pitch angle distribution
supports a skewness that signals supporting a heat flow. If it
does, the eVDF projection along ( )mzP1 can remain nonzero,
and there will be a TF friction. In this case as shown in Figure 2
the net result involves the residual of the competition of two
opposing drags dj; each of these drags would be a first-order
Stokes drag; the competed answer is the TF, the residual of
second-order Stokes effects.

3.1. Drag Properties for General fe(v)

Specializing Equation (8) to an fe( )v that is the entire electron
population, certain general conclusions can be drawn. To
clarify the conditions on integrals for the entire eVDF, this
complete eVDF will be indicated by ( )D =S vf , 0e, using the
Σ subscript to imply that it is the entire eVDF and that it is
presumed at rest in the ion frame, Δ=0.

Upon inspection S is the projection of fΣ along the
Legendre polynomial ( ) ( )m m=zP P1 1 . The net size of the drag
depends on the subsequent nonzero value of the speed integral
over ζ.

Since the net drag for fΣ is dP, a special case of three-related
(moment) integrals of the eVDF given by the common form:
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there is new leverage about the TF made possible by a brief
detour into the three cases:
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where JP and qP are the parallel electrical current and heat flux,
respectively. With a common μ integral, the ( ) r integrands
differ only by their weighting powers, 2+r, of nonnegative
speed. For the fluid plasma model with =U Ue i and ( ) = 1 0,

( )zS must have regions of opposite signs. Since the
nonnegative ζ weights increase with the size of r, the weighted
areas of different signs in ( ) n must grow monotonically when
proceeding from r={−2, 0, 3}, making ( ) ( )- < < 2 0 3
and thus of opposite signs.

This argument, together with the definitions in Equation (11),
proves the general theorem: if ( ) = 1 0 the sign of  and qe,

must be the same, with the general form for  given by
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Figure 3 illustrates the integrand LΣ for the TF determination
using the core–halo eVDF, assuming zero current and typical
1 au solar wind parameters. This integrand represents the
appropriate sum of contributions for the separate subcompo-
nents. As the thermal form has a specific normalization in terms
of the properties of fΣ, LΣ is slightly different than the sum of
contributions from each component separately.
The oppositely signed contributions of the core and halo

components are made clearer by the 100× magnification of
the negative suprathermal contribution to the integrand. For
counterdrifting Gaussian components (required for JP=0) the
maximum moduli of contributions to the integrand are at
slightly less that the rms speed of each subcomponent. The null
of the integrand lies between these values as implied by where
the magnified negative profile clearly emerges from below 0.
Three factors visibly weaken the amplitude of the integrand

at suprathermal speeds: their (i) small fractional density; (ii)
higher rms speed that spreads the eVDF out more in velocity
space than the thermals at unit density, and (iii) the
differentially weakened scattering rate of the suprathermals in
the speed-dependent Coulomb scattering off the ions. The net
TF is a vestige in heat-conducting plasmas of the strong speed
dependence of the Coulomb scattering cross section, causing
TFP to be dominated by the cooler electron subpopulation (see
Figure 3).

3.2. Dreicer Stokes Drag Recovery for Gaussian

However, if fe j, is but a part of the complete eVDF, then its
apparent drift speed Δj in the ion frame may not vanish,
provided it is counterposed by other components that bring the
entire eVDF to move with the ion bulk speed. If, as observed in
the solar wind (e.g., Feldman et al. 1975), the different electron
subcomponents drift in the ion frame along the magnetic field
direction, each component’s velocity space described in the ion
rest frame remains cylindrically symmetric about q̂e. Thus, each
dj determines the drag felt by that electron subcomponent. The
convection of that component in this frame will be that caused
by the relative motion between the j′th electron species and the
ions. We denote for further use below the thermal mach

Figure 3. Speed integrand for the TF using the two-component core–halo
model. Note the suprathermal contribution is slightly negative and seen better
with 100× magnification.
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number of the j′ths component relative field-aligned drift mach
number as º D wj j ej.

The drag realized by a single-drifting Gaussian subcompo-
nent should recover the (first-order) Stokes drag studied by
Dreicer (1959); in so doing Equation (12) is supported as the
appropriate TF generalization for an arbitrary gyrotropic fe. The
structure of the angular average i for a drifting Gaussian with
thermal mach number i is of considerable interest in the
physics and implications of the TF. It takes the form
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For a thermal Gaussian component fe c, of density fraction
(1−δ), thermal speed wc, drifting with speed Δc, and thermal
mach number º D wc c c, putting the integral of Equation (15)
into Equation (8) yields
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where the [ ]... specialization of the collision frequency to a wc

thermal spread and a component fractional density of (1−δ)
are required, and facilitated by Equation (20) below. Dreicer’s
antisymmetric drag function (Dreicer 1959), ΨD, occurs
naturally in this expression, and is defined and approximated
by
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It may seen that Equation (16) above correctly reduces to
Dreicer’s when (the second sparser component has no density)
δ=0; when the rms speed for all electrons is that of the
remaining component: wc=we; when the mach number of the
thermals is identified as that of the whole: = S c , and
which implies that ˆ · ( )º -S + b U U we e.

The form of ( )Y XD is indicated by the black curve in
Figure 4; parallel to the convention of Stokes friction, Dreicer’s
electron drag force is ( )= - YF eE XD D , opposing the sign of
the drift, X. ΨD(X) has a restricted linear regime (contrast with
red dashed line) when ∣ ∣ X 1. Note that typically reported
core and halo drifts in the solar wind are well below the
maximum frictions available when ∣ ∣ =X 1, indicated by
orange-dotted vertical lines. Assuming an outward magnetic
sector in solar wind modeling the core mach number typically
is near Xc=O(−.03) and halo mach numbers centered near
Xh=0(+0.57); for these regimes a slightly different linear
approximation in the cyan regime for the core, and a slightly
different linear approximation for the larger orange regime
suitable for halo values indicated by red dashed and solid blue
lines through the origin have slopes of 1.0 and 0.720,
respectively. These values occur in the approximate expres-
sions in Equations (21) and (26) below. The best precision of

the overall drag comes from using the full transcendental form
of Ψ.

3.3. =-C H Net Drag for Core–Halo Gaussian eVDFs

The superposed (core–halo) model of two Gaussian
components has been used to characterize observed eVDFs in
the solar wind for nearly 50 yr (Montgomery et al. 1968;
Feldman et al. 1975). Equation (16) will now be specialized for
two counterposed Gaussian components with unequal densities
and thermal spreads and zero current to demonstrate its
implications for the size of  in the solar wind at 1 au.
For simplicity we consider only two electron subcomponents

with counterposed drifts satisfying the zero current condition:

[( ) ] ( )d d d- D + D = =+ +n n n1 0 , 18c h h

where c stands for core, h for halo, and “+” stands for the ions.
The sum of drag contributions from the two subcomponents
takes the form:
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where t º w wc h and the needed thermal speed ratio is given
by

( ) ( )d t
d

d
= + - +

-- 
w

w
1 1 2

1

3
. 20e

c
c

2

2
2 2

In Equation (20) the numerically small kinetic energy (c
2)

associated with the drifting of the core and halo in the ion
frame is a tiny part of the overall temperature moment for the
composite distribution function; it is included here to get an
accurate estimate of the moment dispersion we of the composite
parent fΣ.
Using Equation (19), where both the core and halo with
 1i , and Figure 4 to motivate slightly different linear

Figure 4. Variation (black) of minus the dimensionless Coulomb drag, Ψ, for a
Gaussian electron distribution drifting with a thermal mach speed =X

· ˆ
 bqe, . Established by Dreicer, this convention describes the drag on fluid

electrons as ∣ ∣ ( )- Ye E XD D , so that the drag on electrons moving with X<0 is
proportional to ( )-Y <X 0D . This historical convention reproduces standard
Stokes-like behavior at low drift mach numbers with the drag force opposing
the sense of relative motion. The colored regions denote typical core and halo
drift mach numbers for solar wind conditions near 1 au (Salem &
Pulupa 2019).
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slopes, this expression is approximately given by

( ) ( ) ˆ ( ) 
d

p
t-

-
-


 q

w

w

4 1

3
1 0.720 . 21e c

c
e

2

2
3

,

Equation (21) shows that  grows in magnitude with the
core’s thermal drift mach number. Since it is known that the
core drift is enhanced in fast winds at 1 au (Pulupa et al. 2014),
and the solar wind electron temperature is reduced with
increasing speed (Feldman et al. (1975)), and t <d dU 0 the
TF magnitude by this estimate is expected to be larger in fast
solar wind at 1 au than in slow winds.

4. 1 au Thermal Force Properties

4.1. Size

To get a further idea of the size and bulk speed dependence
of the ignored  at 1 au we use the core–halo model and the
well-known coordination of its nonthermal shape parameters
with bulk speed (see summaries of Salem & Pulupa 2019) to
suggest initial estimates of  ʼs strong variation with bulk
speed in Figure 5. The dimensionless TF rises steadily with
solar wind speed, achieving maximum values of   0.15.
This trend is unexpected since traditionally high wind speed
states are thought to be more collisionless; since Coulomb
collisions are involved in the understanding of the TF, naive
arguments would argue that its size would decrease with wind
speed regimes where the Coulomb collision frequency was
reduced.

4.2. Scaling , TF with νei, 

In the previous section the  is shown to be a sizeable term
in the GOL at 1 au in the high-speed wind, in what many have
modeled as the “collisionless” solar wind modeled with the
Vlasov equation (the collisionless Boltzmann equation). The
TF relies on the existence of Coulomb collisions (Braginskii
1965; Fitzpatrick 2014); although such collisions are always
present, it is incorrect to suggest that the TF importance scales
just with the frequency of the collisions. In competition with
collisions the size of the TF is also driven by those factors that
control the skewness of the eVDF. The strong correlation of 
and shown in Figure 6 reflects this fact, since measures the

geometrical skewness of the eVDF and is relatively divorced
from the size of the heat flow set by the number density and
mean thermal energy. In a neutral gas skew deformation is the
complement of fewer and fewer collisions that can isotropize
the eVDF indexed by the dimensionless heat flux /= q qsat,
where =q nkT w3 e esat . However, the strong role of EP in the
finite Knudsen regime of the solar wind plasma permits other
ways for the skewness of the eVDF to be sustained.
To be careful the dimensionless  has been mapped into its

dimensional variant, TFP

( ) ( ) ( ) ( ) º U eE U UTF , 22D

for use in Figure 7, where it is plotted versus the Coulomb
collision frequency, νei(U). Consistent with the impression
from  the dimensional TFP is anticorrelated with νei, despite
the possibility that the variation of the scaling eED(U) could
have changed the dimensionless trend. The observed general
inverse scaling of TFP and νep shows the symmetrizing role of
enhanced collisions is involved in reducing the size of the TF.
It is when this scaling is taken to infinite νep regime that one
incorrectly suggests that  TF 0. Rather, as shown by Spitzer

Figure 5. Estimated size of  as function of bulk speed at 1 au based on long-
term variations of core–halo shape parameters (Salem & Pulupa 2019).
Significance of the suggested size of  can be appreciated, as this becomes
nearly a 25% correction to P in the generalized Ohm’s law at the higher bulk
speeds (see red cross hatching; Figure 1).

Figure 6. Demonstration that the dimensionless heat flux  and  have the
same sense, are 1–1 using the core–halo model 1 au parameters as a function of
U summarized by Salem & Pulupa (2019).

Figure 7. Scaled  (black), unscaled TF (red) evaluated using core–halo
model and observations (Salem & Pulupa 2019), contrasted with local collision
frequency from observations. Contrary to formal ordering suggestions  is
observed to be anticorrelated with collision frequency.
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and Braginskii the TF approaches an assumed infinitesimal
value in their perturbative regime that is independent of νep.

When collisional symmetrization agents of the TFP are
weakened, the TF may strengthen, provided its driving sources
remain; when collisions are stronger the TFP gets smaller, but
may not be wiped out completely, depending on the variations
of the drivers with collisional rate. In this sense the observed
signatures of the TF are consistent with the symmetrizing role
of collisions; however, the other determinant of its size is the
persistence of skewness and omnipresence of inhomogeneity as
collisions increase. To maintain quasi-neutrality, astrophysical
plasmas require an EP that differentially feed skewness
(Scudder 2019b) that is indexed from the moments by the
dimensionless heat flux . This linkage is part of the deep
inter-relationship between the heat flux and the TF summarized
below in Equation (28) and discussed in relation to Figure 6
below.

As developed elsewhere (Scudder 2019b) this electric field
causes a bifurcation of the eVDF, while driving the thermal
part of velocity space in a Drude-like fashion to lag the ions.
The inevitable return currents among the complementary part
enhances the suprathermal deformation toward the heliopause.
This stretching of the eVDF is controlled by  that is more
pronounced in the high-speed wind regimes where collision
frequency goes down. Both reduced collision frequency and
enhanced  allow and cause the eVDF to become more
skewed. Even as Coulomb collision rates go down, there is no
deterioration of the speed dependence of those collisions that
remain, and its is this variation of collision rate with particle
speed that permits the TF to survive.

Dramatic evidence of this type of behavior is seen in
Figure 8, where  and -c are plotted versus  , showing
both signatures are strongly organized by the dimensionless
electric field. Of particular interest is the strong change in TF
and mach number drift as  approaches the vicinity of 0.5, a
regime of considerable interest in runaway theory. Unlike
laboratory runaway conditions that occur beyond  = 0.43,
astrophysical plasma can be in force balance without runaway
at higher  values, since the TF allowed by heat flux
invariably raises the point where JP=0 states are in
equilibrium. At the same time the occurrence of heat flow that

enables the TF is a partial remedy not considered when driving
a laboratory beyond its maximal friction regime. The return
currents that attend the flow of heat tend to symmetrize the
eVDF more nearly than the driven beam considered by Dreicer.
This figure clearly shows that  is strongly organized by  .
Since these quantities differ by the same factor from their
unscaled versions, this figure also implies that the unscaled TF,
TFP, is also controlled by EP. It should be recalled that the size
of  reflects the plasma peculiar requirements to be quasi-
neutral.

4.3. Term in GOL

The dimensionless TF is one of the three dominant terms in
the parallel GOL, GOLP. These terms are the parallel electric
field, the electron pressure divergence, and the TF, which are
not explicitly proportional to the electron mass. In the absence
of current flow and when normalized by Dreicer’s electric field,
the GOLP takes the form

( ) ( ) = + +   O I
2

, 23P

where ( ∣ ∣)a= + +   M2 Te e P
2 , e is the electron

thermal mach number, ∣ ∣ ∣ ∣a= = U w d T d r, ln lne e e T ee ,
and ∣ ∣= d U d rln ln is the very weak exponent of the local
solar wind speed’s increase. The estimated TF (red shading in
Figure 1) makes significant corrections to the dominant
contribution to GOLP made by P, especially as the solar wind
speed increases above 400 km s−1. These “measurements” of the
nanovolt/m EP have significant corrections from the TF term and
negligible corrections from inertial accelerations.
The Lemaire–Scherer electric field (Lemaire & Scherer 1973)

is exospheric theory’s version of the parallel electric field,
while the TF contribution of Spitzer (1965), Braginskii (1965),
Fitzpatrick (2014), and this paper pertain to the size of the last
term (right-hand side (rhs)) in GOLP. Thus, the TF is but a part
of, and does not contain the Lemaire–Scherer field in its
entirety.
The Lemaire–Scherer field is the required EP in the zero

collision picture to produce quasi-neutrality and zero current; it
plays precisely the same physical role as EP of the GOLP. The
collisionless approach determines EP directly within its Vlasov
closure. The GOLP estimates EP indirectly from a two-fluid
collisional closure. Since such weak EP cannot be directly
measured, its size must be estimated, as shown in Figure 1, as
the sum of all the parts of the rhs of the GOL that are now
measurable. One of these parts is the TF reported in the present
paper, and the other is the pressure Knudsen number that can
be inferred from measured radial gradients.

4.4. Impact on Size of 

As shown above < 0.15. Previous estimates (Scudder
1996, 2019c; Issautier et al. 1998) of  from the pressure
divergence or Knudsen number term in Equation (23) yield
estimates that are generally larger in the high-speed solar wind;
there  provides as much as a 30% enhancement to  .
Because the radial sense of r is aligned with that of the heat
flow, it is invariably radially outward; thus, the TF adds to the
average contribution to EP produced by P, which is always
positive in the radial direction when the pressure profile
decreases with radius.

Figure 8. Empirical variation of  (blue) and-c (red) vs.  , showing a
strong positive correlation, including noticeable and strong coordinated change
when conditions near  0.5.
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These modeled estimates for ( ) UP implied by Figure 1 and
those of Figure 5 above for ( ) U give a first post Knudsen
number picture in Figure 1 of the variation of ( ) U . The
composite preliminary picture shows, as expected, that (i)  is a
generally rising function of U, consistent with its theoretical role
in levitating the ions out of their gravitational trap. (ii) It is
uniformly non-perturbative in the sense of being ( ) ( ) = U O 1 ,
as reported earlier (Scudder 1996). More precise bulk speed
patterns will be possible when the TF contributions are
determined directly from observed, rather than modeled eVDFs.

In addition, new implications are that (iii) this is the domain
where the  is increasingly important, despite its size being
determined by sparse, but nonvanishing, Coulomb collisions.
(iv) Here the  adds to the already positive value of P, ,
enhancing the size of  in ways not being presently considered
by fluid models for astrophysical plasmas. (v) The presence of
the  implies a significant energy heating of the electrons
thousands of times more vigorous than the energy exchange
rate estimated between Gaussian electron–proton distributions
as two Gaussians with different temperatures. (vi) The strength
of the  testifies to an important role for Coulomb collisions,
since the dominant part of the force occurs for electrons with
low speeds compared to the rms thermal speed, where the
collisional time is orders of magnitude shorter than the
Coulomb scattering rate for the rms electron. The likelihood
that collisionless instabilities resonant with the shifted thermal
electrons and their stand-alone wave-particle regulation are
meaningful by themselves is brought into question. A more
nuanced picture of the plasma is required to predict the
potential role of Vlasov-modeled resonant instabilities driven
by the small mach number drifts of the core (Forslund 1970;
Gary et al. 1975).

5.  Impact on Energy Equation

At first the connection between the TF (a rate of momentum)
and the heat flow (a rate of energy flow) seems a bit forced; the TFP
relationship to EP is clear from the momentum equation and the
GOLP, Equation (23). The purpose of this section is to clarify the
role of the TF in the two-fluid energy equation, its close connection
to the heat flow, and its substantial role in constraining a fluid
plasma as two fluids with separate internal energy equations.

Starting from the empirical evaluation of the TF and heat
flux in the framework of the core–halo model, it is possible to
exhibit the strong 1–1 correspondence and alignment of the
heat flux and the TF well into the finite Knudsen regime, where
Spitzer (1965) and Braginskii (1965) provide no guidance.

This is followed by careful reconstruction of the two-fluid
equations for the fluid plasma, (neglecting Stokes first-order
friction: JP=0), retaining second-order Stokes friction, (TF),
and looking for its footprint in the conservation laws of the
internal energy equations. Using observations the incidence of
strong signatures in the radial rate equations for the internal
energy of the electrons and ions are estimated for the solar wind
at 1 au. The TF is shown to facilitate sizable exchanges of
available internal energy by augmenting electron cooling in the
plasma, leaving more internal energy available for the protons
—assuming no new supply of internal energy is available.

This same bookkeeping exercise suggests that there is also a
new, second-order electron ohmic heating caused by the proton
drag on each subcomponent of the heat-conducting eVDF. This
energy source, Se, for the electrons is a sink for the ions, and its
size is shown to be O(1000) times bigger than the pro forma

energy exchange rates involving -T Te i differences usually
included (but found to be ineffective) in two-fluid models for the
solar wind (Hartle & Sturrock 1968; Breech et al. 2009; Cranmer
et al. 2009; Chandran et al. 2011). Overall, the TF rate of
electron (ion) cooling (heating) is enhanced by the consideration
of the TF, rather than neglecting it. The spirit of the “cooling”
and “heating” concerns the increment to · qj made by the
process. Cooling makes the negative divergence more negative,
while heating makes the local negative divergence less negative.
Conversely, given a closure and a specified · qj the

explained role of the TF clarifies that sizable channels exist for
exchanging heat made available by the j′th species to modify
the temperature profiles of the ith species—that are presently
not included in the most recent two-fluid plasma modeling of
the solar corona.

6.  , Correlations

6.1. Core–Halo Heat Flux, qP

The heat flux using the core–halo model is given by

⎛
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Scaling qP via the saturated heat flux, ºq n kT w3 e e esat , yields

the dimensionless heat flux, 


º
q
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, given by
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where ºm w kT2e e e
2 . The approximate relationships for the TF

and the dimensionless heat flux in Equations (21) and (25),
algebraically motivate that the  and  are proportional at
smallc values. As motivated elsewhere (Scudder 2019b) the
size of-c scales with the strength of EP, hinting that the 
and  will be well organized by  .

6.2. Functional Dependence:  ,

In the small Knudsen number regime where EP and the heat
flow is perturbative, Equations (21) and (25) determine the
expected leading-order linear correlation between dimension-
less heat flow and TF, viz.,

( )
( )

( ( )) ( )  
p t

t t
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w

w
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5 1
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w
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e

2
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As  goes to zero, or equivalently is ignored, the heat flux
also disappears. Equation (26) is rigorous in this conclusion
that these two effects are either (i) both not zero and parallel or
(ii) are both zero.
Developing a solution for an astrophysical fluid plasma with

a heat closure without its attendant TF is inconsistent. This can
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be seen in Equation (11), since the existence of qP implies  is
nontrivial, which implies the TF will also be.

6.3. More Precise ( ) =  

The unapproximated expressions for and  Equations (19)
and (25), based on observed (Salem & Pulupa 2019) statistically
correlated 1 au variations of ( ) ( ) ( )d t U U U, , c demonstrate in
Figure 6 the overall 1–1 correlation between and. Grids for
the variation (in the 1 au data) of the core mach number drift,
-c (red), and the variation of the solar wind speed, U (blue),
are overlaid on this figure to produce context.

The realized functional relationship shows generally that (i)
these two variables are related in a 1–1 manner; and (ii) that the
TF and heat flux are aligned (as generally argued above); while
documenting (iii) typical extremes of these variables and (iv)
their underlying wind context. Higher  and  occur in the
fast wind. This correlation shows that  is sensitive to the
skewness, or deformed shape, of the eVDF inventoried by .

This trend for 1 au observations has been approximated by
one branch of a hyperbola

( )
( )

 +

- - +

 
 

3.13962 0.0581922

0.5 0.0135453 0.781819 13.0007 .
28

2 1 2

An alternate form for this relationship with  as the
independent variable is

[ ] ( )
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 

- +

´ - +

 

 

0.475194 0.041378 0.075677

0.298959 3.86409 13.0007 . 292 1 2

7. : Internal Energy Equations

In this section the role of the TF in the plasma fluid energy
equations is outlined and the consequences of its remainder
being undefined are discussed for the internal energy equations
of electrons and ions.

7.1.  Restructures Both

The general j′th species energy equation (including all
sources to it, Sji) is given by Meyer-Vernet (2007):
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where = - = + FZ Z1, 1,e p E and ΦG are the electrical and
gravitational potentials, respectively. The second form assumes
a spherically symmetric description of the wind.

The full electron momentum equation given by
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+ +
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dU

dr n

d nk T

dr
e
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1
TF 31r

r B e E
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incorporates the TF drag, TFr, between the electrons and ions.
Note the assumed absence of electron–ion first-order Stokes
friction within this plasma two-fluid model, but that the

TFr>0 remains as a residual frictional coupling, opposing the
sunward directed electric force on the electrons. It is in this
sense that the TF is a second-order Stokes friction, not because
it is necessarily small, but precisely because the first-order
Stokes friction vanishes by postulating a fluid plasma. Because
the heat flow asymmetry is so large, TFr can represent a
significant source of collisional coupling between the species,
especially as the solar wind speed increases even though there
is no parallel current involved. One measure of the strength of
this coupling has already been shown in Figure 1, where the

 is shown to rise from 0.1% → 30% of the size of EP

between 400 and 800 km s−1.
This construction yields the general electron internal energy

equation free of explicit body forces:

⎡
⎣⎢

⎤
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( ) · ( )- + = 
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qnU kT
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S

ln
TF , , 32r e

e
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3 2

with the TF, TFr, and energy exchange term, Sep, explicitly
present. All terms, except TFr, and the source term Sep are those
typically considered for the electrons in the fluid plasma, with S
containing the collision rates of energy transfer (e.g., Hartle &
Sturrock 1968; Chandran et al. 2011). The term TFr (and parts
of Sep developed below) allow serious consideration of the

>TF 0;r the term TFr represents an enhanced cooling for the
electrons, by locally pushing · qe to be more negative.
The term Sep contains exchange terms with the ions from all
circumstances. The nonzero size of the TF leads to a new
contribution to S, a second-order ohmic source term, for the
electrons discussed below in Section 7.2. (If formal ordering
had expunged or ignored the TF from consideration of the

TF 0r , then S would revert to the usual very small collisional
Coulomb energy exchange between electrons and ions at rest,
WE

ep, retained by Hartle & Sturrock (1968), which will be
shown below to be much smaller than that energy exchanged
caused by the TF.)
The ion momentum equation takes a form complementary to

Equation (31):

( )
( )+ = -

F
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F
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dU
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e

d
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dr

1
TF , 33r
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with the sign of the charge and TF reaction reversed from that
in Equation (31). Here the electric field levitates the ions away
from the Sun and the reaction pair of the TF moderates that
levitation.
The corresponding internal energy equation for the protons

becomes (in the approximation Equation (32))

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ · ( )+ - = 
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d nT
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ln
TF . 34r p
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3 2

This ion analog of Equation (32) has the sign of charges
reversed from the electron version: the TF makes a positive
contribution to · qp for the ions, while the contribution from
Sep (dominated by the TF ohmic term discussed in Section 7.2)
implies a complementary sink term for the ions. Equations (32)
and (34) illustrate the linkages between the internal energy of
electrons and ions made possible by incorporating the TF. In
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this way the consideration of the TF effects a redistribution of
available internal energy from that possible in its absence.

When the ion and electron internal energy equations are
added, the terms TFr and Sep in Equations (32) and (34) sum to
zero, so that they do not appear in the total internal energy
equation.

If the test of the solar wind model is to reproduce the
temperature partition between ions and electrons (see Hartle &
Sturrock 1968; Breech et al. 2009; Cranmer et al. 2009;
Chandran et al. 2011), the corresponding, consistent, and
correct TF must be included in the respective internal energy
equations. Further, the practice of adopting an ad hoc moment
heat law without specifying the attendant TF cannot be
expected to predict the observed temperature partition of the
ions and electrons; such assumptions have no guarantee that
they are consistent with the GOLP or zero current, or
accordingly closed in a consistent theoretical manner. Neither
can such incomplete descriptions be used to suggest that new
model physics included is adequate (or not) because of these
deficiencies.

7.2.  and Second-order Ohmic Source

The source term Sep in the electron energy variant of
Equation (30) represents (i) exchange energy WE

ep between ions
to electrons modeled as Gaussians at rest in the center of mass
frame, and (ii) a form of TF induced second-order ohmic
heating, S , caused by the skewing of the velocity space in
opposite directions along B, accomplished against opposite
drags produced by the ions on counterdrifting parts of the
eVDF. The (ii) form is initiated by the quasi-neutral EP that
drives the overdamped thermal electrons to lag the ions, while
the counter drift is a zero return current corollary response to EP
that initiated the skew (Scudder 2019b). Clearly the displace-
ment of the thermal and suprathermals are opposed by ion drag,
so the drag produces a frictional heating of both species, at
rates determined by their respective component first-order
Stokes drifts. Using the TF component drags, the S source
term becomes

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )d d

=

= - Y + Y   


S

neE w

w

w

w

w
1 . 35

D e

e

c
c D c

e

h
h D h

The variation of ( )S U at 1 au from Equation (35) is shown in
Figure 9 as the solid black line. The correction ( )W Uep

E

associated with the energy exchange between Gaussian
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3
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e

electrons and ions at rest in the ion frame has been added to
( )S u to plot the (indiscernible) red dashed–dotted line. This

correction is more than 600 times smaller than the TF
contribution to S , imperceptible in the graph that has the
same units as those in Figure 10, and is an ignorable further
correction to the energy equation. Thus,  S Se .

8.  Two-fluid Picture · qj (1 au, U)

It is now possible to bring together the information required
to illustrate the · qj variation with bulk speed at 1 au. Solar
cycle-independent statistical profiles for the ions in the form of
the Burlaga–Ogilvie relationship (Burlaga & Ogilvie 1970)
Tp(U) and radial power-law trends from Lopez & Freeman
(1987) are used for the entropy terms for the ions in
Equation (34), while the electron variability is taken from a
recent Helios study (Scudder 2019c) and the TF profiles come
from the above analysis.
Figure 10 illustrates the contributing profiles to · qj in

three successive approximations: ·=  qIIIe e at 1 au and
· =q IIIp p as a function of bulk speed determined using the

same observed profile parameter variations for electrons used
as in other figures in this paper. The IIIj profiles are the
suggested “observed” variations of · ( ) q Uj possible. Of note
is that despite the usual attempts to ignore · qp in modeling
the solar wind heating problem (e.g., Breech et al. 2009;
Cranmer et al. 2009), there is in these data considerable

Figure 9. Empirical variation of S (black) and +S Wep
E at 1 au (red

dashed), virtually undetectable from the underlying black line for S alone.

Figure 10. 1 au profiles vs. the solar wind speed of electron and ion terms in
· = + +q I II IIIk k k k . Vertical scale is linear and negative, indicative of

cooling; larger absolute values imply faster cooling rates (depletions of internal
energy). Note that the TF increases (decreases) the electron (ion) moduli of
their respective, but still negative divergences.
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evidence of negative ion heat divergence, with a sizable
variation in its size with bulk speed; only the lowest speed
winds are at all consistent with possibly having quasi-adiabatic
behavior, a conclusion already reached (Scudder 2015).

The curves labeled as Ij are the baseline entropy terms of the
divergences, assuming  = = S0, 0, while the curves
labeled IIj reflect the revised profile of · qj when the inferred
TF is included, but the second-order ohmic heating of electrons
is ignored.

Figure 10 shows that the dominant TF effect on the size of
· qj is well estimated by the curves labeled IIj, and only

marginally improved by the second-order ohmic source term S.
However, it is hard to evaluate the cumulative importance of
the solar wind radial profiles of these modifications to the rates,
since they will scale with the unknown radial variations of TF
and Se over r of each of these new terms as well as a solution
with the appropriate closure.

A sense of the impact of the TF using the available 1 au data
can be seen in Figure 11, where the ratio of ion-to-electron
divergence versus wind speed are shown with (solid) and
without (dashed) contributions from the TF. For wind speeds
below the transition at 610 km s−1 (585 km s−1), electron
cooling dominates ion cooling with (without) the TF contribu-
tions. Since the TF importance grows with wind speed, the
comparison of these cooling rates differ by factors of 2 above
these transition speeds, with ions cooling nearly twice as fast as
the electrons if the effects of the TF are ignored. From this
point of view the high-speed wind is characterized by the onset
of strong TF effects that enhance the levitation of ions,
moderate the rates of cooling of electrons relative to ions, in
stark contrast to the implications from the ion internal energy
content alone (I Ip e profiles dashed) that without TF effects are
cooling twice as fast as the electrons, whereas with the TF
effects their cooling rates have more nearly equilibrated as the
bulk speed increases.

9. Summary

The TF is an omnipresent, numerically important frictional
force in any heat-conducting plasma that is mass asymmetric,
such as the hydrogenic solar wind. It remains nonzero even

when the plasma supports no current, as in the customary
multifluid plasma models of astrophysics with a common flow
velocity.
The TF has been demonstrated to be measurable on a single

spacecraft in the solar wind and to play a significant role in
parallel force balance required to achieve a fluid model for that
plasma. The finite Knudsen number regime of the solar wind is
typical of plasmas found in astrophysics.
The dimensionless TF is proved to always be parallel to the

dimensionless electron heat flux; with observables they are
demonstrated to be 1–1 functions of one another.
The dimensionless TF has been shown in the solar wind to

have increasing importance in the high-speed solar wind, and to
be inversely dependent on the size of the local Coulomb
electron–proton collision frequency.
The size of the TF represents a competition between the

Coulomb collision rate that when increased tries to reduce its
size and the parallel electric field that is the source of the
skewness of the electron distribution function. This competition
is won by the electric field for typical solar wind conditions
above 400 km s−1.
The size of the TF and its velocity space support are pivotal

to obtaining a physical heat law closure that can confidently
predict the properties of the plasma and the partition of internal
energy among its constituents.
Theoretically the TF is shown to change the structure of the

internal energy equations of the constituent species. The size of
these energy exchanges between species is controlled by the
electron heat flow which is a 1–1 function of the TF.
Since the TF and heat flow are physically tandem, one

cannot be logically presumed present without the other. The
extant practice in astrophysical fluid modeling of choosing
ad hoc moment heat laws for closure without a physically
consistent TF recipe vacates all physical predictions from such
a model about the separate species temperature profiles.
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